El Cemento
Enviado por AzielLeblanc • 14 de Marzo de 2014 • 2.850 Palabras (12 Páginas) • 267 Visitas
Cemento
Para otros usos de este término véase Cemento (desambiguación).
Camión hormigonera.
En ingeniería civil y construcción se denomina cemento a un aglutinante o conglomerante hidráulico que, mezclado con agregados pétreos (árido grueso o grava más árido fino o arena) y agua, crea una mezcla uniforme, manejable y plástica capaz de fraguar y endurecer al reaccionar con el agua y adquiriendo por ello consistencia pétrea, el hormigón o concreto. Su uso está muy generalizado, siendo su principal función la de aglutinante.
Tabla de contenidos
[ocultar]
1 Tipos de cemento
1.1 El cemento de Pórtland
1.1.1 Reacciones de formación del clinker
1.1.2 Reacciones de hidratación
1.1.3 Función del yeso
1.1.4 Módulos
1.1.5 Cementos de Pórtland especiales
1.1.5.1 Pórtland férrico
1.1.5.2 Cementos blancos
1.2 Cementos de mezclas
1.2.1 Cemento puzolánico
1.2.2 Cemento siderúrgico
1.3 Cemento de fraguado rápido
1.4 Cemento aluminoso
1.4.1 Reacciones de hidratación
2 Proceso de fabricación
3 Almacenamiento del cemento
4 Referencias
5 Véase también
6 Enlaces externos
Tipos de cemento [editar]
Se pueden establecer dos tipos básicos de cementos:
1. de origen arcilloso: obtenidos a partir de arcilla y piedra caliza en proporción 1 a 4 aproximadamente;
2. de origen puzolánico: la puzolana del cemento puede ser de origen orgánico o volcánico.
Existen diversos tipos de cemento, diferentes por su composición, por sus propiedades de resistencia y durabilidad, y por lo tanto por sus destinos y usos.
Desde el punto de vista químico se trata en general de una mezcla de silicatos y aluminatos de calcio, obtenidos a través del cocido de calcáreo, arcilla y arena. El material obtenido, molido muy finamente, una vez que se mezcla con agua se hidrata y solidifica progresivamente. Puesto que la composición química de los cementos es compleja, se utilizan terminologías específicas para definir las composiciones.
El cemento de Pórtland [editar]
El cemento de Pórtland es el tipo de cemento más utilizado como aglomerante para la preparación del hormigón o concreto.
Fue inventado en 1824 en Inglaterra por el constructor Joseph Aspdin. El nombre se debe a la semejanza en su aspecto con las rocas encontradas en la isla de Pórtland, una isla del condado de Dorset.
La fabricación del cemento de Pórtland se da en tres fases: (i) Preparación de la mezcla de las materias primas; (ii) Producción del clinker; y, (iii) Preparación del cemento.
Las materias primas para la producción del Pórtland son minerales que contienen:
óxido de calcio (44%),
óxido de silicio (14,5%),
óxido de aluminio (3,5%),
óxido de hierro (3%)
óxido de manganeso (1,6%).
La extracción de estos minerales se hace en canteras, que preferiblemente deben estar próximas a la fábrica, con frecuencia los minerales ya tienen la composición deseada, sin embargo en algunos casos es necesario agregar arcilla o calcáreo, o bien minerales de hierro, bauxita, u otros minerales residuales de fundiciones.
Esquema de un horno
La mezcla es calentada en un horno especial, constituido de un inmenso cilindro (llamado kiln) dispuesto horizontalmente con una ligera inclinación, y rodando lentamente. La temperatura crece a lo largo del cilindro hasta llegar a aproximadamente 1400°C; la temperatura es tal que hace que los minerales se combinen pero no se fundan o vitrifiquen.
En la sección de temperatura menor, el carbonato de calcio (calcáreo) se separa en óxido de calcio y dióxido de carbono (CO2). En la zona de alta temperatura el óxido de calcio reacciona con los silicatos y forma silicatos de calcio (Ca2Si y Ca3Si). Se forma también una pequeña cantidad de aluminato tricálcico (Ca3Al) y Ferroaluminato tetracálcico (Ca4AlFe). El material resultante es denominado clinker. El clinker puede ser conservado durante años antes de proceder a la producción del cemento, con la condición de que no entre en contacto con el agua.1
La energía necesaria para producir el clinker es de aproximadamente 1.700 julios por gramo, pero a causa de las perdidas de calor el valor es considerablemente más elevado. Esto comporta una gran demanda de energía para la producción del cemento, y por lo tanto la liberación de una gran cantidad de dióxido de carbono en la atmósfera, gas de efecto invernadero.
Para mejorar las características del producto final al clinker se le agrega aproximadamente el 2 % de yeso y la mezcla es molida finamente. El polvo obtenido es el cemento preparado para su uso.
El cemento obtenido tiene una composición del tipo:
64% óxido de calcio
21% óxido de silicio
5,5% óxido de aluminio
4,5% óxido de hierro
2,4% óxido de magnesio
1,6% sulfatos
1% otros materiales, entre los cuales principalmente agua.
Cuando el cemento de Pórtland es mezclado con el agua, el producto solidifica en algunas horas y endurece progresivamente durante un período de varias semanas. El endurecimiento inicial es producido por la reacción del agua, yeso y aluminato tricálcico, formando una estructura cristalina de calcio-aluminio-hidrato, estringita y monosulfato. El sucesivo endurecimiento y el desarrollo de fuerzas internas de tensión derivan de la reacción más lenta del agua con el silicato de tricalcio formando una estructura amorfa llamada calcio-silicato-hidrato. En ambos casos, las estructuras que se forman envuelven y fijan los granos de los materiales presentes en la mezcla. Una última reacción produce el gel de silicio (SiO2). Las tres reacciones generan calor.
Con el agregado de materiales particulares al cemento (calcáreo o cal) se obtiene el cemento plástico, que fragua más rápidamente y es más fácilmente trabajable. Este material es usado en particular para el revestimiento externo de edificios.
La calidad del cemento de Pórtland deberá estar de acuerdo con la norma ASTM C 150.
En el 2004, los principales productores mundiales de cemento de Pórtland fueron Lafarge en Francia, Holcim en Suiza y Cemex en México. Algunos productores de cemento fueron multados por comportamiento monopólico.
Reacciones de formación del clinker [editar]
1000–1100°C
3CaO+Al2O3→ 3CaOAl2O3
2CaO+SiO2→ 2CaOSiO2
CaO+Fe2O3→ CaOFe2O3
1100–1200°C
CaOFe2O3+3CaOAl2O3→
...