Estadistica Exani Ii
Enviado por cthulhu1986 • 5 de Julio de 2013 • 5.650 Palabras (23 Páginas) • 490 Visitas
Medidas de posición no centrales
Las medidas de posición no centrales permiten conocer otros puntos característicos de la distribución que no son los valores centrales. Entre otros indicadores, se suelen utilizar una serie de valores que dividen la muestra en tramos iguales:
Cuartiles: son 3 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en cuatro tramos iguales, en los que cada uno de ellos concentra el 25% de los resultados.
Deciles: son 9 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en diez tramos iguales, en los que cada uno de ellos concentra el 10% de los resultados.
Percentiles: son 99 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en cien tramos iguales, en los que cada uno de ellos concentra el 1% de los resultados.
Ejemplo: Vamos a calcular los cuartiles de la serie de datos referidos a la estatura de un grupo de alumnos (lección 2ª). Los deciles y centiles se calculan de igual manera, aunque haría falta distribuciones con mayor número de datos.
Variable Frecuencias absolutas Frecuencias relativas
(Valor) Simple Acumulada Simple Acumulada
1,20 1 1 3,3% 3,3%
1,21 4 5 13,3% 16,6%
1,22 4 9 13,3% 30,0%
1,23 2 11 6,6% 36,6%
1,24 1 12 3,3% 40,0%
1,25 2 14 6,6% 46,6%
1,26 3 17 10,0% 56,6%
1,27 3 20 10,0% 66,6%
1,28 4 24 13,3% 80,0%
1,29 3 27 10,0% 90,0%
1,30 3 30 10,0% 100,0%
1º cuartil: es el valor 1,22 cm, ya que por debajo suya se situa el 25% de la frecuencia (tal como se puede ver en la columna de la frecuencia relativa acumulada).
2º cuartil: es el valor 1,26 cm, ya que entre este valor y el 1º cuartil se situa otro 25% de la frecuencia.
3º cuartil: es el valor 1,28 cm, ya que entre este valor y el 2º cuartil se sitúa otro 25% de la frecuencia. Además, por encima suya queda el restante 25% de la frecuencia.
Atención: cuando un cuartil recae en un valor que se ha repetido más de una vez (como ocurre en el ejemplo en los tres cuartiles) la medida de posición no central sería realmente una de las repeticiones.
Diagrama de árbol
Un diagrama de árbol es una herramienta que se utiliza para determinar todos los posibles resultados de un experimento aleatorio. En el cálculo de la probabilidad se requiere conocer el número de objetos que forman parte del espacio muestral, estos se pueden determinar con la construcción de un diagrama de árbol. Ejemplo: Si Juan tiene 3 pantalones y 2 camisas basta multiplicar 3x2=6 y son 6 posibilidades de que se pueda vestir.
El diagrama de árbol es una representación gráfica de los posibles resultados del experimento, el cual consta una serie de pasos, donde cada uno de los pasos tiene un número finito de maneras de ser llevado a cabo. Se utiliza en los problemas de conteo y probabilidad.
Para la construcción de un diagrama en árbol se partirá poniendo una rama para cada una de las posibilidades, acompañada de su probabilidad. Cada una de estas ramas se conoce como rama de primera generación.
En el final de cada rama de primera generación se constituye a su vez, un nudo del cual parten nuevas ramas conocidas como ramas de segunda generación, según las posibilidades del siguiente paso, salvo si el nudo representa un posible final del experimento (nudo final).
Hay que tener en cuenta que la construcción de un árbol no depende de tener el mismo número de ramas de segunda generación que salen de cada rama de primera generación y que la suma de probabilidades de las ramas de cada nudo ha de dar 1.
Existe un principio sencillo de los diagramas de árbol que hace que éstos sean mucho más útiles para los cálculos rápidos de probabilidad: multiplicamos las probabilidades si se trata de ramas adyacentes (contiguas), el ejemplo de alumna de la primera facultad, o bien las sumamos si se trata de ramas separadas que emergen de un mismo punto, el ejemplo de encontrar un alumno.
Ejemplos
Una universidad está formada por tres facultades:
La 1ª con el 50% de estudiantes.
La 2ª con el 25% de estudiantes.
La 3ª con el 25% de estudiantes.
Las mujeres están repartidas uniformemente, siendo un 60% del total en cada facultad.
Histograma.
En estadística, un histograma es una representación gráfica de una variable en forma de barras, donde la superficie de cada barra es proporcional a la frecuencia de los valores representados. Sirven para obtener una "primera vista" general, o panorama, de la distribución de la población, o la muestra, respecto a una característica, cuantitativa y continua, de la misma y que es de interés para el observador (como la longitud o la masa). De esta manera ofrece una visión en grupo permitiendo observar una preferencia, o tendencia, por parte de la muestra o población por ubicarse hacia una determinada región de valores dentro del espectro de valores posibles (sean infinitos o no) que pueda adquirir la característica. Así pues, podemos evidenciar comportamientos, observar el grado de homogeneidad, acuerdo o concisión entre los valores de todas las partes que componen la población o la muestra, o, en contraposición, poder observar el grado de variabilidad, y por ende, la dispersión de todos los valores que toman las partes, también es posible no evidenciar ninguna tendencia y obtener que cada miembro de la población toma por su lado y adquiere un valor de la característica aleatoriamente sin mostrar ninguna preferencia o tendencia, entre otras cosas.
En el eje vertical se representan las frecuencias, es decir, la cantidad de población o la muestra, según sea el caso, que se ubica en un determinado valor o subrango de valores de la característica conocido como intervalo de clase. En el eje horizontal se representa el espectro de valores posibles que toma la característica de interés, evidentemente, cuando éste espectro de valores es infinito o muy grande el mismo es reducido a sólo una parte que muestre la tendencia o comportamiento de la población, en otras ocasiones éste espectro es extendido para mostrar el alejamiento o ubicación de la población o la muestra analizada respecto de un valor de interés.
En general se utilizan para relacionar variables cuantitativas continuas, pero también se lo suele usar para variables cuantitativas discretas, en cuyo caso es común llamarlo diagrama de frecuencias y sus barras están separadas, esto por que en el x ya no se representa un espectro continuo de valores, sino valores cuantitativos específicos como ocurre en un diagrama de barras cuando la característica que se representa es cualitativa
...