ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estadística Medidas de tendencia central


Enviado por   •  14 de Junio de 2013  •  1.199 Palabras (5 Páginas)  •  473 Visitas

Página 1 de 5

Estadística

Medidas de tendencia central

De Wikipedia, la enciclopedia libre

Saltar a: navegación, búsqueda

Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro de la distribución de datos se denomina medida o parámetro de tendencia central o de centralización. Cuando se hace referencia únicamente a la posición de estos parámetros dentro de la distribución, independientemente de que ésta esté más o menos centrada, se habla de estas medidas como medidas de posición.1 En este caso se incluyen también los cuantiles entre estas medidas.

Entre las medidas de tendencia central tenemos:

• Media .

• Media ponderada.

• Media geométrica.

• Media armónica.

• Mediana.

• Moda.

Se debe tener en cuenta que existen variables cualitativas y variables cuantitativas, por lo que las medidas de posición o medidas de tendencia se usan de acuerdo al tipo de variable que se está observando, en este caso se observan variables cuantitativas.

Índice

[ocultar]

• 1 Moda

o 1.1 Propiedades

o 1.2 Inconvenientes

• 2 Mediana

o 2.1 Cálculo de la mediana para datos agrupados

o 2.2 Propiedades e inconvenientes

• 3 Véase también

• 4 Referencias

• 5 Enlaces externos

Moda[editar]

Artículo principal: Moda (estadística).

La moda se refiere al dato más repetido, el valor de la variable con mayor frecuencia absoluta.2 En cierto sentido la definición matemática corresponde con la locución "estar de moda", esto es, ser lo que más se lleva.

Su cálculo es extremadamente sencillo, pues sólo necesita un recuento. En variables continuas, expresadas en intervalos, existe el denominado intervalo modal o, en su defecto, si es necesario obtener un valor concreto de la variable, se recurre a la interpolación.

Por ejemplo, el número de personas en distintos vehículos en una carretera: 5-7-4-6-9-5-6-1-5-3-7. El número que más se repite es 5, entonces la moda es 5.

Hablaremos de una distribución bimodal de los datos, cuando encontremos dos modas, es decir, dos datos que tengan la misma frecuencia absoluta máxima. Cuando en una distribución de datos se encuentran tres o más modas, entonces es multimodal. Por último, si todas las variables tienen la misma frecuencia diremos que no hay moda.

Cuando tratamos con datos agrupados en intervalos, antes de calcular la moda, se ha de definir el intervalo modal. El intervalo modal es el de mayor frecuencia absoluta.

La moda, cuando los datos están agrupados, es un punto que divide el intervalo modal en dos partes de la forma p y c-p, siendo c la amplitud del intervalo, que verifiquen que:

Siendo la frecuencia absoluta del intervalo modal y y las frecuencias absolutas de los intervalos anterior y posterior, respectivamente, al

Las calificaciones en la asignatura de Matemáticas de 39 alumnos de una clase viene dada por la siguiente tabla (debajo):

Calificaciones 1 2 3 4 5 6 7 8 9

Número de alumnos 2 2 4 5 8 9 3 4 2

Propiedades[editar]

Sus principales propiedades son:

• Cálculo sencillo.

• Interpretación muy clara.

• Al depender sólo de las frecuencias, puede calcularse para variables cualitativas. Es por ello el parámetro más utilizado cuando al resumir una población no es posible realizar otros cálculos, por ejemplo, cuando se enumeran en medios periodísticos las características más frecuentes de determinado sector social. Esto se conoce informalmente como "retrato robot".3

Inconvenientes[editar]

• Su valor es independiente de la mayor parte de los datos, lo que la hace muy sensible a variaciones muestrales. Por otra parte, en variables agrupadas en intervalos, su valor depende excesivamente del número de intervalos y de su amplitud.

• Usa muy pocas observaciones, de tal modo que grandes variaciones en los datos fuera de la moda, no afectan en modo alguno a su valor.

• No siempre se sitúa hacia el centro de

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com