GEOMETRÍA DESCRIPTIVA PRIMITIVA
Enviado por tsukiyomi1 • 5 de Octubre de 2014 • 1.754 Palabras (8 Páginas) • 250 Visitas
GEOMETRÍA DESCRIPTIVA PRIMITIVA El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban en problemas como la medida del tamaño de los campos o el trazado de ángulos rectos para las esquinas de los edificios.
Este tipo de geometría empírica, que floreció en el Antiguo Egipto, Sumeria y Babilonia, fue refinado y sistematizado por los griegos. En el siglo VI a.C. el matemático Pitágoras colocó la piedra angular de la geometría científica al demostrar que las diversas leyes arbitrarias e inconexas de la geometría empírica se pueden deducir como conclusiones lógicas de un número limitado de axiomas, o postulados.
Estos postulados fueron considerados por Pitágoras y sus discípulos como verdades evidentes; sin embargo, en el pensamiento matemático moderno se consideran como un conjunto de supuestos útiles pero arbitrarios.
Un ejemplo típico de los postulados desarrollados y aceptados por los matemáticos griegos es la siguiente afirmación “una línea recta es la distancia más corta entre dos puntos”.
Un conjunto de teoremas sobre las propiedades de puntos, líneas, ángulos y planos se puede deducir lógicamente a partir de estos axiomas:
• “la suma de los ángulos de cualquier triángulo es igual a la suma de dos ángulos rectos”
• “el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los otros dos lados” (conocido como teorema de Pitágoras).
La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro Los elementos. El texto de Euclides, a pesar de sus imperfecciones, ha servido como libro de texto básico de geometría hasta casi nuestros días
GEOMETRÍA ANALÍTICA. La geometría avanzó muy poco desde el final de la era griega hasta la edad media. El siguiente paso importante en esta ciencia lo dio el filósofo y matemático francés René Descartes, cuyo tratado El Discurso del Método, publicado en 1637, hizo época. Este trabajo fraguó una conexión entre la geometría y el álgebra al demostrar cómo aplicar los métodos de una disciplina en la otra. Éste es un fundamento de la geometría analítica, en la que las figuras se representan mediante expresiones algebraicas, sujeto subyacente en la mayor parte de la geometría moderna.
Otro desarrollo importante del siglo XVII fue la investigación de las propiedades de las figuras geométricas que no varían cuando las figuras son proyectadas de un plano a otro.
La geometría sufrió un cambio radical de dirección en el siglo XIX. Los matemáticos Carl Friedrich Gauss, Nikolái Lobachevski, y János Bolyai, trabajando por separado, desarrollaron sistemas coherentes de geometría no euclídea. Estos sistemas aparecieron a partir de los trabajos sobre el llamado “postulado paralelo” de Euclides, al proponer alternativas que generan modelos extraños y no intuitivos de espacio, aunque, eso sí, coherentes.
Casi al mismo tiempo, el matemático británico Arthur Cayley desarrolló la geometría para espacios con más de tres dimensiones. Imaginemos que una línea es un espacio unidimensional. Si cada uno de los puntos de la línea se sustituye por una línea perpendicular a ella, se crea un plano, o espacio bidimensional. De la misma manera, si cada punto del plano se sustituye por una línea perpendicular a él, se genera un espacio tridimensional. Yendo más lejos, si cada punto del espacio tridimensional se sustituye por una línea perpendicular, tendremos un espacio tetradimensional.
Aunque éste es físicamente imposible, e inimaginable, es conceptualmente sólido. El uso de conceptos con más de tres dimensiones tiene un importante número de aplicaciones en las ciencias físicas, en particular en el desarrollo de teorías de la relatividad.
Einstein demuestra con estas 4 coordenadas que a medida que la velocidad tiende a la de la luz, el tiempo tiende a cero.
Tenemos: línea, plano, espacio tridimensional. En el espacio de cuatro dimensiones y cinco las propiedades algebraicas y las estructuras son las mismas.
Otro concepto dimensional, el de dimensiones fraccionarias, apareció en el siglo XIX.
También se han utilizado métodos analíticos para estudiar las figuras geométricas regulares en cuatro o más dimensiones y compararlas con figuras similares en tres o menos dimensiones.
Esta geometría se conoce como geometría estructural. Un ejemplo sencillo de este enfoque de la geometría es la definición de la figura geométrica más sencilla que se puede dibujar en espacios con cero, una, dos, tres, cuatro o más dimensiones.
En la geometría analítica las líneas rectas, las curvas y las figuras geométricas se representan mediante expresiones algebraicas y numéricas usando un conjunto de ejes y coordenadas. Cualquier punto del plano se puede localizar con respecto a un par de ejes perpendiculares dando las distancias del punto a cada uno de los ejes.
En un espacio tridimensional, los puntos se pueden localizar de manera similar utilizando tres ejes, el tercero de los cuales, normalmente llamado z, es perpendicular a los otros dos en el punto de intersección, también llamado origen.
El segundo tipo de problema es: dada una expresión algebraica, describir en términos geométricos el lugar geométrico de los puntos que cumplen dicha expresión. Por ejemplo, una circunferencia de radio 3 y con su centro en el origen es el lugar geométrico de los puntos que satisfacen:
Usando ecuaciones como éstas, es posible resolver algebraicamente esos problemas geométricos de construcción, como:
• la bisección de un ángulo o de una recta dados
• encontrar la perpendicular a una recta que pasa por cierto punto
• dibujar una circunferencia que pasa por tres puntos dados que no estén en línea recta.
La geometría analítica ha tenido gran importancia en el
...