ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Historia De Numeros Reales


Enviado por   •  11 de Mayo de 2015  •  1.049 Palabras (5 Páginas)  •  949 Visitas

Página 1 de 5

Historia de los Números Reales

Los egipcios dieron origen por primera vez a las fracciones comunes alrededor del año 1000 a. C.; alrededor del 500 a. C. un grupo de matemáticos griegos liderados por Pitágoras se dio cuenta de la necesidad de los números irracionales. Los números negativos fueron ideados por matemáticos indios cerca del 600, posiblemente reinventados en China poco después, pero no se utilizaron en Europa hasta el siglo XVII, si bien a finales del XVIII Leonhard Euler descartó las soluciones negativas de las ecuaciones porque las consideraba irreales. En ese siglo, en el cálculo se utilizaban números reales sin una definición precisa, cosa que finalmente sucedió con la definición rigurosa hecha por Georg Cantor en 1871.

En realidad, el estudio riguroso de la construcción total de los números reales exige tener amplios antecedentes de teoría de conjuntos y lógica matemática. Fue lograda la construcción y sistematización de los números reales en el siglo XIX por dos grandes matemáticos europeos utilizando vías distintas: la teoría de conjuntos de Georg Cantor (encajamientos sucesivos, cardinales finitos e infinitos), por un lado, y el análisis matemático de Richard Dedekind (vecindades, entornos y cortaduras de Dedekind). Ambos matemáticos lograron la sistematización de los números reales en la historia, no de manera espontánea, sino utilizando todos los avances previos en la materia: desde la antigua Grecia y pasando por matemáticos como Descartes, Newton, Leibniz, Euler, Lagrange, Gauss, Riemann, Cauchy y Weierstrass.

Evolución del concepto de número

Se sabe que los egipcios y babilónicos hacían uso de fracciones (números racionales) en la resolución de problemas prácticos. Sin embargo, fue con el desarrollo de la matemática griega cuando se consideró el aspecto filosófico de número. Los pitagóricos descubrieron que las relaciones armónicas entre las notas musicales correspondían a cocientes de números enteros, lo que les inspiró a buscar proporciones numéricas en todas las demás cosas, y lo expresaron con la máxima «todo es número». En la matemática griega, dos magnitudes son conmensurables si es posible encontrar una tercera tal que las primeras dos sean múltiplos de la última, es decir, es posible encontrar una unidad común para la que las dos magnitudes tengan una medida entera. El principio pitagórico de que todo número es un cociente de enteros, expresaba en esta forma que cualesquiera dos magnitudes deben ser conmensurables.

Sin embargo, el ambicioso proyecto pitagórico se tambaleó ante el problema de medir la diagonal de un cuadrado, o la hipotenusa de un triángulo rectángulo, pues no es conmensurable respecto de los catetos. En notación moderna, un triángulo rectángulo cuyos catetos miden 1, tiene una hipotenusa que mide raíz cuadrada de dos √2:

Si √2 = p/q es un número racional donde p/q está reducido a sus términos mínimos (sin factor común) entonces 2q2 = p2.

La expresión anterior indica que p2 es un número par y por tanto p también, es decir, p = 2m. Sustituyendo obtenemos 2q2 = (2m)2 = 4m2, y por tanto q2 = 2m2.

Pero el mismo argumento usado nos dice ahora que q debe ser un número par, esto es, q = 2n. Más esto es imposible, puesto que p y q no tienen factores comunes (y hemos encontrado que 2 es un factor de ambos).

Por tanto, la suposición misma de que √2 es un número

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com