Logaritmos
Enviado por DenisseMV • 22 de Junio de 2015 • 470 Palabras (2 Páginas) • 117 Visitas
TRABAJO GRUPAL
(8^(X^2-4) )^(1/(X+2))= (4^((X-2)/2) )^(1/(X+2))
8^(X^2-4)=4^((X-2)/2)
2^(〖3(X〗^2-4))=2^2((X-2)/2)
De aquí: Se igualan los exponentes
〖3(X〗^2-4) = 2((X-2)/2)
3= (x-2)/(x^2-4)
3= 1/((x+2) )
3(x+2)=1
3x+6=1
3x= 1/6
x= (-5)/3
(27/8)^(x^2-1/3) (3/2)^(-3-2x)= (4/9)^(x^2-3x)
(3^3/2^3 )^(x^2-1/3) (3/2)^(-3-2x)= (2^2/3^2 )^(x^2-3x)
〖(3/2)^3(x^2-1/3) (3/2)^(- (2x+3))= 〗^ (2/3)^(〖2(x〗^2-3x))
〖(2/3)^(-3(x^2-1/3) ) (2/3)^( (2x+3) )= 〗^ (2/3)^(〖2(x〗^2-3x))
〖〖 (2/3)〗^(1-〖3x〗^2 ) (2/3)^( (2x+3) )= 〗^ (2/3)^(〖2x〗^2-6x))
〖〖 (2/3)〗^(2x-〖3x〗^2+4) = 〗^ (2/3)^(〖2x〗^2-6x))
2x-3x^2+4= 〖2x〗^2-6x
4= 〖5x〗^2-8x
x=2
5^((5x+1)/9) › (125)^((x+1)/10)
5^((5x+1)/9) › 5^3((x+1)/10)
(5x+1)/9 › 3((x+1)/10)
(5x+1)/9- 3((x+1)/10) › 0
(10x+10-27x27)/90 › 0
(23x-17)/90 › 0
23x › 17
x › 17/23
log_3x-3 log_x3+ 1/4 log_3x= log10
5/4 log_3x- 3/log_3x =1
(5/4 〖(log_3x)〗^2-3)/log_3x =1
(5〖(log_3x)〗^2-12)/(4 log_3x )=1
5〖(log_3x)〗^2-12= 4 log_3x
5〖(log_3x)〗^2-4 log_3〖x-12〗=0
5 log_3x +6
1 log_3x -2
(5 log_3x+6)(log_3x-1)=0
log_3x= (-6)/5 v log_3x=1
x= 3^((-6)/5) v x=3
(log_5〖x 〗+ log_x5)/(1+ log_5x )= 17/20
(((log_5〖x 〗 )^2+ 1)/( log_5x ))/(1+ log_5x )= 17/20
((log_5〖x 〗 )^2+ 1)/( log_5x+ (log_5〖x 〗 )^2 )= 17/20
20(log_5〖x 〗 )^2+20= 17 log_5x+ 〖17(log_5〖x 〗 )〗^2
3(log_5〖x 〗 )^2 - 17 log_5x+20=0
3 log_5x -5
〖1log〗_5x -4
(3 log_5x-4)(log_5〖x-5)=0〗
log_5x= 5/3 log_5x=4
x=5^(5/3) x=625
(log_2x ) (log_(x/2)2 )+log_(x/16)2=0
log_2x/log_2〖x/2〗 +log_(x/16)2=0
log_2〖x/(x/2)〗+log_(x/16)2=0
log_22+ log_(x/16)2=0
〖 log〗_(x/16)2=
...