ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Los vectores propios


Enviado por   •  27 de Agosto de 2013  •  Informe  •  2.164 Palabras (9 Páginas)  •  466 Visitas

Página 1 de 9

//En álgebra lineal, los vectores propios, autovectores o eigenvectores de un operador lineal son los vectores no nulos que, cuando son transformados por el operador, dan lugar a un múltiplo escalar de sí mismos, con lo que no cambian su dirección. Este escalar recibe el nombre valor propio, autovalor, valor característico o eigenvalor. A menudo, una transformación queda completamente determinada por sus vectores propios y valores propios. Un espacio propio, autoespacio o eigenespacio es el conjunto de vectores propios con un valor propio común.

La palabra alemana eigen, que se traduce en español como propio, se usó por primera vez en este contexto por David Hilbert en 1904 (aunque Helmholtz la usó previamente con un significado parecido). Eigen se ha traducido también como inherente, característico o el prefijo auto-, donde se aprecia el énfasis en la importancia de los valores propios para definir la naturaleza única de una determinada transformación lineal. Las denominaciones vector y valor característicos también se utilizan habitualmente.

Definiciones

Las transformaciones lineales del espacio —como la rotación, la reflexión, el ensanchamiento, o cualquier combinación de las anteriores; en esta lista podrían incluirse otras transformaciones— pueden interpretarse mediante el efecto que producen en los vectores. Los vectores pueden visualizarse como flechas de una cierta longitud apuntando en una dirección y sentido determinados.

⦁ Los vectores propios de las transformaciones lineales son vectores que, o no se ven afectados por la transformación o se ven multiplicados por un ⦁ escalar, y por tanto no varían su dirección.⦁ 1

⦁ El valor propio de un vector propio es el factor de escala por el que ha sido multiplicado.

⦁ Un espacio propio es un ⦁ espacio formado por todos los vectores propios del mismo valor propio, además del vector nulo, que no es un vector propio.

⦁ La ⦁ multiplicidad geométrica de un valor propio es la ⦁ dimensión del espacio propio asociado.

⦁ El ⦁ espectro de una transformación en ⦁ espacios vectoriales finitos es el conjunto de todos sus valores propios.

Por ejemplo, un vector propio de una rotación en tres dimensiones es un vector situado en el eje de rotación sobre el cual se realiza la rotación. El valor propio correspondiente es 1 y el espacio propio es el eje de giro. Como es un espacio de una dimensión, su multiplicidad geométrica es uno. Es el único valor propio del espectro (de esta rotación) que es un número real.

Formalmente, se definen los vectores propios y valores propios de la siguiente manera: Si A: V → V es un operador lineal en un cierto espacio vectorial V, v es un vector diferente de cero en V y c es un escalar tales que

entonces decimos que v es un vector propio del operador A, y su valor propio asociado es c. Observe que si v es un vector propio con el valor propio c entonces cualquier múltiplo diferente de cero de v es también un vector propio con el valor propio c. De hecho, todos los vectores propios con el valor propio asociado c junto con 0, forman un subespacio de V, el espacio propio para el valor propio c. Observe además que un espacio propio Z es un subespacio invariante de A, es decir dado w un vector en Z, el vector Aw también pertenece a Z.

[editar] Ejemplos

A medida que la Tierra rota, los vectores en el eje de rotación permanecen invariantes. Si se considera la transformación lineal que sufre la Tierra tras una hora de rotación, una flecha que partiera del centro de la Tierra al polo Sur geográfico sería un vector propio de esta transformación, pero una flecha que partiera del centro a un punto del ecuador no sería un vector propio. Dado que la flecha que apunta al polo no cambia de longitud por la rotación, su valor propio es 1.

Otro ejemplo sería una lámina de metal que se expandiera uniformemente a partir de un punto de tal manera que las distancias desde cualquier punto al punto fijo se duplicasen. Esta expansión es una transformación con valor propio 2. Cada vector desde el punto fijo a cualquier otro es un vector propio, y el espacio propio es el conjunto de todos esos vectores.

//commons.wikimedia.org/wiki/File:Standing_wave.gif //commons.wikimedia.org/wiki/File:Standing_wave.gif

/wiki/Archivo:Standing_wave.gif /wiki/Archivo:Standing_wave.gifUna onda estacionaria en una cuerda fija en sus cabos o, más concretamente, una función propia de la transformación correspondiente al transcurso del tiempo. A medida que varía el tiempo, la onda estacionaria varía en amplitud, pero su período no se modifica. En este caso el valor propio es dependiente del tiempo.

Sin embargo, el espacio geométrico tridimensional no es el único espacio vectorial. Por ejemplo, considérese una cuerda sujeta por sus extremos, como la de un instrumento de cuerda (mostrada a la derecha). La distancia de los átomos de la cuerda vibrante desde sus posiciones cuando ésta está en reposo pueden interpretarse como componentes de un vector en el espacio con tantas dimensiones como átomos tenga dicha cuerda.

Si se supone que la cuerda es un medio continuo y se considera la transformación de la cuerda en el transcurso del tiempo, sus vectores propios o funciones propias son sus ondas estacionarias—lo que, mediante la intervención del aire circundante, se puede interpretar como el resultado de tañer una guitarra. Las ondas estacionarias corresponden a oscilaciones particulares de la cuerda tales que la forma de la cuerda se escala por un factor (el valor propio) con el paso del tiempo. Cada componente del vector asociado con la cuerda se multiplica por este factor dependiente del tiempo. Las amplitudes (valores propios) de las ondas estacionarias decrecen con el tiempo si se considera la atenuación. En este caso se puede asociar un tiempo de vida al vector propio, y relacionar el concepto de vector propio con el concepto de resonancia.

[editar] Casos de interés especial

Intuitivamente, para las transformaciones lineales del espacio de dos dimensiones , los vectores propios son:

⦁ rotación: ningún vector propio de valores reales (existen en cambio pares valor propio, vector propio complejos).

⦁ reflexión: los vectores propios son perpendiculares y paralelos al eje de simetría, los valores propios son -1 y 1, respectivamente.

⦁ escalado uniforme: todos los vectores son vectores propios, y el valor propio es el factor de escala.

⦁ proyección sobre una recta: los vectores propios con el valor propio 1 son paralelos a la línea, vectores propios con el valor propio 0 son paralelos a la dirección de la proyección

[editar] Ecuación del valor propio o autovalor

Matemáticamente, vλ es un vector propio y λ el valor propio

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com