Matematica financiera-interes compuesto.
Enviado por yanbal26 • 4 de Junio de 2016 • Examen • 552 Palabras (3 Páginas) • 10.556 Visitas
[pic 1]
Capítulo 03: Interés Compuesto
Jennyffer Alexandra Coronado Sarmiento
Administración Financiera
Fundamentos de Matemática Financiera
Tutor: Román Andrés Agudelo Chavarro
Corporación Universitaria Minuto de Dios
Bogotá D.C.
2016
PROBLEMAS
1- Dado el 30 % nominal trimestral, calcular una tasa nominal mensual equivalente
NTV = NMV 30%
[(1+1/5)^5/m-1] *m = J
[1+0.075)^4/12-1]*12
[(1+0.075)^0.333333-1]*12
0.024399*12 = 0.292798
0.292798*100 = 29.2798% NMV
2- Dado el 27% nominal trimestre anticipado, calcular la tasa nominal bimestre vencida.
NTA 27%= NBV
[(1 - J / 5 )^ -5/m-1] * m = J
[(1-0.27/4)^(-4/6)-1]*6
[(1-0.0675)^ -0.666666-1]*6
0.047693154*6 = 0.286159
0.286159*100 = 28.6159% NBV
6- Dado el 36% nominal mensual, hallar una tasa nominal semestre anticipada
NMV 36% = NSA
[[(1+ j / 5 )^(5/-m)-1]*(-1)]*2
[[(1+0.03)^-6(-1)]-(-1)]*2
0.162515*2 = 0.325031
0.325031*100 = 32.5031 % NSA
8- Hallar la tasa nominal convertible semestralmente equivalente al 12% CM
CM 12% = NSV
[(1+ J / 2)^5/m-1]*m = J
[(1+0.12/12)^12/2-1]*2
[(1+0.01)^6-1]*2
0.061520*2 = 0.123040
0.123040*100 = 12.3040%NSV
9- Encontrar una tasa TV equivalente al 24% SV
SV 24% = NTV
[(1+0.24/2)^2/4-1]*4
[(1+0.12]^0.5-1]*4
0.058300524*4 = 0.233202
0.233202*100 = 23.3202% NTV
12- Hallar una tasa nominal semestral equivalente al 24% TV
24% TV = NSV
[(1+0.24/4)^4/2-1]*2
[(1+0.06)^2-1]*2
0.1236*2 = 0.2472
0.2472*100 = 24.72% NSV
13- Dado el 30% anual anticipado, hallar una tasa anual vencida que sea equivalente
30% AN = EAV
[(1-0.30)^(-1/1)-1]
[(0.7)^-1]
1.428571-1
0.428571*100 = 42.8571% EAV
16- Hallar la tasa efectiva anual anticipada, equivalente al 4% efectiva bimestral
EAV 4% = EAA
[(1+0.04)^(6/-1)-1]
[(0.790314525-1)*-1)]
-0.209685*(-1)
0.209685*100 = 20.9685% EAA
28- Encontrar una tasa efectiva anual equivalente al 30% nominal semestral anticipada
EAV 30% = NSA
[(1-0.30/2)^-2/1]-1
[(1-0.15)^-2]-1
(1.384083045)-1
0.384083*100 = 38.4083% NSA
32- Encontrar la tasa efectiva anual anticipada equivalente al 32% anual capitalizable bimestre anticipado
EAA 32% = NBA = EAA
[(1-0.32/6)^(-6/-1)-1]*(-1)
[(1-0.053333)^6-1]*(-1)
-0.280249*(-1)
0.280249*100 = 28.0249% EAA
33- Hallar la tasa convertible anualmente equivalente al 12% TV
NTV 12% = NAV
[(1+0.12/4)^4/1]-1
[(1+0.03)^4]-1
1.12550881-1
0.125509*100 = 12.5509% NAV
34- Encontrar la tasa nominal semestre anticipado equivalente al 24% MV
NMV 24% = NSA
[[(1+0.24/12)^(12/-2)-1]*(-1)]*2
[[[(1+0.02)^-6(-1)]*(-1)]*2
[(-0.112028617)*(-1)]*2
0.112028617*2 = 0.224057
0.224057*100 = 22.4057% NSA
39- Calcular la tasa nominal mes anticipado equivalente al 40% TA
NTA 40% = NMA
[[(1-0.40/4)^(-4/-12)-1]*(-1)]*12
[[(1-0.1)^0.333333(-1)]*(-1)]*12
[(-0.034510615)*(-1)]*12
0.034510615*12
0.414127*100 = 41.4127% NMA
40- Hallar la tasa efectiva anual equivalente al 41.4127% nominal mes anticipado
NMA 41.4127% = EAV
[(1-0.414127/12)^(-12/1)-1]
[(1-0.034510)^-(12)-1]
1.524157289-1
0.524158*100 = 52.4158% EAV
45- Dada la tasa del 21% anual capitalizable mes anticipado, halle:
- Nominal bimestre anticipado
[[(1-0.21/12)^(-12/-6)-1]*(-1)]*6
[[(1-0.0175)-1]*(-1)]*6
[(-0.03469375)*(-1)]*6
0.03469375*6 = 0.208163
0.208163*100 = 20.8163% NBA
-Nominal trimestre vencido
[(1-0.21/12)^(-12/4)-1]*4
[(1-0.0175)^-3-1]*4
(0.054392535)*4
0.217570*100 = 21.7570% NTV
-Efectiva semestre anticipado
[[(1-021/12)^(-12/-2)-1]*(1)]
[(1-0.0175)^6(-1)]*(-1)]
[(-0.100512)*(-1)]
0.100512*100 = 10.0512% ESA
- Efectiva mensual vencido
[(1-0.21/12)^(-12/12)*-1]
[(1-0.0175)^-1]*-1
(1.017812)-1
0.017812*100 = 1.7812% EMV
46- Dada la tasa del 2% mensual, halle:
-Efectiva bimestral vencida
[(1+0.02)^(12/6)-1] = i
[(1+0.02)^(2)]-1 = i
(1.0404) -1 = i
0.0404*100 = 4.040% EBV
-Efectiva trimestral anticipada
[(1+0.02)^(12/-4)-1]*(-1)]
[[(1+0.02)^(-3)-1]*(-1)]
[(0.942322334)-1]*-1
(-0.057677665)*-1
0.057678*100 = 5.7678% ETA
...