ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matrices


Enviado por   •  10 de Noviembre de 2014  •  Informe  •  4.139 Palabras (17 Páginas)  •  188 Visitas

Página 1 de 17

Abreviadamente suele expresarse en la forma A = (aij), con i =1, 2, ..., m, j =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la matriz, el primero denota la fila (i) y el segundo la columna (j). Por ejemplo el elemento a25 será el elemento de la fila 2 y columna 5.

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales.

Ejemplo

Las matrices

A = y B =

Son iguales solo sí: x =0 y = 1

Algunos tipos de matrices

Vamos a describir algunos tipos de matrices que aparecen con frecuencia debido a su utilidad, y de los que es conveniente recordar su nombre.

Atendiendo a la forma

Matriz fila: Es una matriz que solo tiene una fila, es decir m =1 y por tanto es de orden 1 x n. Ejemplo: A= [2, -3, 5]

Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1 y por tanto es de orden m x 1. Ejemplo:

Matriz cuadrada: Es aquella que tiene el mismo número de filas que de columnas, es decir m = n. En estos casos se dice que la matriz cuadrada es de orden n, y no n x n. Ejemplo:

Los elementos aij con i = j, o sea aii forman la llamada diagonal principal de la matriz cuadrada, y los elementos aij con i + j = n +1 la diagonal secundaria.

Matriz traspuesta: Dada una matriz A, se llama transpuesta de A, y se representa por At, a la matriz que se obtiene cambiando filas por columnas. La primera fila de A es la primera fila de At, la segunda fila de A es la segunda columna de At, etc.

Ejemplo La matriz transpuesta de la matriz A

A = es At =

Propiedades de la trasposición de matrices

1. Dada una matriz A, siempre existe su traspuesta y además es única.

2. (At)t = A.

Matriz simétrica: Una matriz cuadrada A es simétrica si A = At, es decir, si aij = aji i, j.

Matriz antisimétrica: Una matriz cuadrada es antisimétrica si A = –At, es decir, si aij = –aji  i, j.

Ejemplos Consideremos las siguientes matrices:

Podemos observar que los elementos simétricos de A son iguales, o que AT = A. Siendo así, A es simétrica.

Para B los elementos simétricos son opuestos entre sí, de este modo B es antisimétrica.

A simple vista, C no es cuadrada; en consecuencia, no es ni simétrica ni antisimétrica.

Atendiendo a los elementos

Matriz nula es aquella que todos sus elementos son 0 y se representa por 0.

Ejemplo [0, 0]

Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no pertenecientes a la diagonal principal son nulos.

Ejemplo

Matriz escalar: Es una matriz diagonal con todos los elementos de la diagonal iguales.

Ejemplos

Matriz identidad: Es una matriz escalar con los elementos de la diagonal principal iguales a 1.

Ejemplos

Matriz Triangular: Es una matriz cuadrada que tiene nulos todos los elementos que están a un mismo lado de la diagonal principal. Las matrices triangulares pueden ser de dos tipos:

Triangular Superior: Si los elementos que están por debajo de la diagonal principal son todos nulos. Es decir, aij =0  i<j.

Ejemplo

Triangular Inferior: Si los elementos que están por encima de la diagonal principal son todos nulos. Es decir, aij =0 j<i.

Ejemplo

OPERACIONES CON MATRICES

Suma y resta de matrices

Para poder sumar o restar matrices, éstas deben tener el mismo número de filas y de columnas. Es decir, si una matriz es de orden 3 x 2 y otra de 2x3, no se pueden sumar ni restar. Esto es así ya que, tanto para la suma como para la resta, se suman o se restan los términos que ocupan el mismo lugar en las matrices.

Ejemplo:

Para sumar o restar más de dos matrices se procede igual. No necesariamente para poder sumar o restar matrices, éstas tienen que ser cuadradas.

Ejemplo:

Producto de matrices

Para poder multiplicar dos matrices, la primera debe tener el mismo número de columnas que filas la segunda. La matriz resultante del producto quedará con el mismo número de filas de la primera y con el mismo número de columnas de la segunda.

Es decir, si tenemos una matriz 2 x 3 y la multiplicamos por otra de orden 3 x 5, la matriz resultante será de orden 2 x 5.

(2 x 3) * (3 x 5) = (2 x 5)

Se puede observar que el producto de matrices no cumple la propiedad conmutativa, ya que en el ejemplo anterior, si multiplicamos la segunda por la primera, no podríamos efectuar la operación.

3 x 5 por 2 x 3,

puesto que la primera matriz no tiene el mismo número de columnas que filas la segunda.

Supongamos que A = (ai j ) y B = (bi j ) son matrices tales que el número de columnas de A coincide con el número de filas de B; es decir, A es una matriz m  p y B una matriz p  n. Entonces el producto AB es la matriz m  n cuya entrada ij se obtiene multiplicando la fila i de A por la columna j de B.

Esto es,

Ejemplo:

1.

2.

Producto por un escalar

El producto de un escalar k por la matriz A, escrito k•A o simplemente kA, es la matriz obtenida multiplicando cada entrada de A por k:

Ejemplo:

Entonces:

División de matrices

La división de matrices se define como el producto del numerador multiplicado por la matriz inversa del denominador. Es decir, sean las matrices A y B tal que A/B = AB-1:

Si una matriz está dividida entre un escalar, todos los términos de la matriz quedarán divididos por ese escalar.

Ejemplo:

DETERMINANTES

A cada matriz n-cuadrada A = (ai j ) se le asigna un

...

Descargar como (para miembros actualizados) txt (22 Kb)
Leer 16 páginas más »
Disponible sólo en Clubensayos.com