Medianas Y Baricentro
Enviado por monopoli2995 • 24 de Octubre de 2012 • 500 Palabras (2 Páginas) • 721 Visitas
.Medianas y Baricentro
Se llama mediana a la recta que une un vértice con la mitad del lado opuesto. En un triángulo ABC, las tres medianas se cruzan en un punto G llamado Baricentro que es el centro de gravedad del triángulo. Cada mediana divide al triángulo en dos triángulos de igual área. Además el Baricentro dista doble del vértice que del punto medio del lado.
Mediatrices y Circuncentro
La mediatriz de un segmento es la recta perpendicular en su punto medio. Las mediatrices de un triángulo son las mediatrices de sus lados. El punto O donde se cortan las tres mediatrices se llama Circuncentro y equidista, es decir, está la misma distancia de los tres vértices A, B y C, es por eso que pertenece a las tres mediatrices. La circunferencia que pasa por los tres vértices se llama Circunferencia Circunscrita.
Alturas y Ortocentro
ALTURAS: se llama altura en un triángulo a la perpendicular trazada desde un vértice al lado opuesto. En un triángulo ABC, las tres alturas se cruzan en un punto llamado Ortocentro. Se puede ver que si trazamos por cada vértice una paralela al lado opuesto se obtiene otro triángulo cuyas mediatrices son justamente las alturas del triángulo primitivo.
Recta de Euler
El baricentro de un triángulo está alineado con el ortocentro y el circuncentro, y a doble distancia del primero que del segundo. La recta que contiene a estos tres puntos se llama Recta de Euler.
Bisectrices e Incentro
Se llama bisectriz a la recta que divide un ángulo en dos partes iguales. Las bisectrices de un triángulo son las bisectrices de sus ángulos. El punto I donde se cortan las tres bisectrices interiores se llama Incentro, equidista de los tres lados y por eso podemos construir una circunferencia de centro I tangente a los lados del triángulo. Dicha circunferencia se llama Circunferencia Inscrita y es la circuferencia más "grande" que se puede definir completamente contenida dentro del triángulo.
Consecuencias de estas construcciones:
CIRCUNFERENCIA EXINSCRITA: el incentro de un triángulo es el único punto interior que equidista de las rectas de los lados, pero existen también puntos exteriores que tienen la misma propiedad y se llaman Exincentros. Dichos Exincentros se forman en los puntos de intersección de las bisectrices exteriores del triángulo.
TRIÁNGULO ÓRTICO: recíprocamente, las alturas de todo triángulo (acutángulo) son bisectrices interiores del triángulo cuyos vértices son los pies de sus alturas. Este triángulo se llama Triángulo Órtico. Como consecuencia se desprende que los lados de un triángulo acutángulo son las bisectrices exteriores de su triángulo órtico y que los vértices de un triángulo son los exicentros de su triángulo órtico.
CIRCUNFERENCIA DE FEUERBACH: Dado un triángulo cualquiera, no rectángulo, aplicando
...