Medidas De Tendencia Central
Enviado por ArturitoLorca • 9 de Septiembre de 2012 • 392 Palabras (2 Páginas) • 576 Visitas
Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número . Este número que, para tal fin, suele situarse hacia el centro de la distribución de datos se denomina medida o parámetro de tendencia central o de centralización. Cuando se hace referencia únicamente a la posición de estos parámetros dentro de la distribución, independientemente de que ésta esté más o menos centrada, se habla de estas medidas como medidas de posición.[1] En este caso se incluyen también los cuantiles entre estas medidas. Se debe tener en cuenta que existen variables cualitativas y variables cuantitativas, por lo que las medidas de posición o medidas de tendencia se usan de acuerdo al tipo de variable que se está observando, en este caso se observan variables cuantitativas.
Entre las medidas de tendencia central tenemos:
Media .
Media ponderada.
Media geométrica.
Media armónica.
Mediana.
Moda.
Inconvenientes de su usoEste parámetro, aún teniendo múltiples propiedades que aconsejan su uso en situaciones muy diversas, tiene también algunos inconvenientes, como son:
Para datos agrupados en intervalos (variables continuas) su valor oscila en función de la cantidad y amplitud de los intervalos que se consideren.
La estatura media como resumen de una población homogénea (abajo) o heterogénea (arriba).Es una medida a cuyo significado afecta sobremanera la dispersión, de modo que cuanto menos homogéneos sean los datos, menos información proporciona. Dicho de otro modo, poblaciones muy distintas en su composición pueden tener la misma media.[4] Por ejemplo, un equipo de baloncesto con cinco jugadores de igual estatura, 1,95 m, evidentemente, tendría una estatura media de 1,95 m, valor que representa fielmente a esta población homogénea. Sin embargo, un equipo de jugadores de estaturas más heterogéneas, 2,20 m, 2,15 m, 1,95 m, 1,75 m y 1,70 m, por ejemplo, tendría también, como puede comprobarse, una estatura media de 1,95 m, valor que no representa a casi ninguno de sus componentes.
En el cálculo de la media no todos los valores contribuyen de la misma manera. Los valores altos tienen más peso que los valores cercanos a cero. Por ejemplo, en el cálculo del salario medio de un empresa, el salario de un alto directivo que gane 1.000.000 de € tiene tanto peso como el de diez empleados "normales" que ganen 1.000 €. En otras palabras, se ve muy afectada por valores extremos.
No se puede determinar si en una distribución de frecuencias hay intervalos de clase abiertos.
...