Medidas de Tendencia Central
Enviado por karasu07 • 29 de Abril de 2014 • 3.089 Palabras (13 Páginas) • 277 Visitas
Medidas de Tendencia Central
Definiciones:
Las medidas de tendencia central son valores que se ubican al centro de un conjunto de datos ordenados según su magnitud. Generalmente se utilizan 4 de estos valores también conocidos como estadigrafos, la media aritmética, la mediana, la moda y al rango medio.
La media aritmética es la medida de posición utilizada con más frecuencia. Si se tienen n valores de observaciones, la media aritmética es la suma de todos y caca uno de los valores dividida entre el total de valores: Lo que indica que puede ser afectada por los valores extremos, por lo que puede dar una imagen distorcionada de la información de los datos.
La Mediana, es el valor que ocupa la posición central en un conjunto de datos, que deben estar ordenados, de esta manera la mitad de las observaciones es menor que la mediana y la otra mitad es mayor que la mediana, resulta muy apropiada cuando se poseen observaciones extremas.
La Moda es el valor de un conjunto de datos que aparece con mayor frecuencia. No depende de valores extremos, pero es más variables que la media y la mediana.
Rango Medio es la media de las observaciones menor y mayor. como intervienen solamente estas observaciones, si hay valores extremos, se distorsiona como medida de posición, pero
ofrece un valor adecuado, rápido y sencillo para resumir al conjunto de datos.
________________________________________
Datos Discretos
No Agrupados
Analicemos para ello las edades que utilizamos cuando se vió la organización y presentación de datos discretos:
12 15 14 15 16
18 19 14 15 17
15 17 18 16 19
16 17 15 15 17
16 18 17 19 17
23 16 17 18 19
Estos fueron loa datos mostrados originalmente, no se han ordenado ni agrupado, determinemos ahora los valores de la Media, la Mediana y la moda, para ello recurramos a las fórmulas de estas medidas que resumimos en la siguiente tabla:
Medida Formula Observaciones
Media
Donde xi se refiere a todo y cada uno de los elementos de la muestra y n es el numero total de elementos en la muestra.
Mediana a) p = (n/2) Es la posición en donde se encuentra la mediana.
Si n es impar, entonces es la opción a, en caso contrario, la b.
El valor de la mediana se obtiene por observación
b) p = (n/2) + 1
Moda Se obtiene el valor por observación
Rango Medio (Valor máximo + Valor Mínimo) / 2
Aplicando, se obtienen los siguientes valores:
Para la media:
_ 12 + 15 + 14 + 15 + 16 + 18 + 19 + 14 + 15 + 17 + 15 + 17 + 18 + 16 + 19 + 16 + 17 + 15 + 15 + 17 + 16 + 18 + 17 + 19 + 17 + 23 + 16 + 17 + 18 + 19
X = -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
30
_ 500
X = ------------ = 16.6667
30
Para la mediana debera ordenarse el grupo de datos, como n = 30, utilizaremos la posición p = (30/2) = 15, el primer valor mayor a 15 corresponde a la clase 17.
La moda estaría determinada por observación directa, y correspondería al valor 17, que se presenta hasta 7 veces en la muestra.
El rango medio se determina por la suma entre 23 y 12 dividido entre 2 (23 + 12)/2 = 35/2 = 17.5
Si observamos los valores obtenidos veremos que solo para el cálculo de la mediana se obtiene tuvo que ordenar la información (así lo específica la definición), sin embargo podemos también observar que este ordenamiento no afecta de manera directa ninguno de los cálculos, de esta manera se puede construir la siguiente tabla:
Medida Valor Calculado Observaciones
Media 16.6667
Mediana 17 Se requirió el cálculo de la frecuencia acumulada
Moda 17
Rango Medio 17.5
Es de notar lo cercano de todos los valores que se han calculado, que circundan el valor de 17, no se notan cambios en los resultados comparados con los datos originales, sin embargo las formulas si se ven modificadas.
________________________________________
Agrupados
Recurramos ahora al agrupamiento de los datos discretos del ejercicio que hemos estado utilizando:
Clase Repeticiones Total de Años de la clase
12 1 12
14 2 28
15 6 90
16 5 80
17 7 119
18 4 72
19 4 76
23 1 23
Total 30 500
En donde podemos observar la suma de las frecuencias y de los años multiplicados por la clase que agrupa a los datos coinciden con los datos utilizados cuando no se agruparon en la sección anterior, utilizando ahora las formulas de la siguiente tabla:
Medida Formula Observaciones
Media Donde xi se refiere a todo y cada uno de los elementos de la muestra y n es el número total de elementos en la muestra y fi se refiere a la frecuencia de la clase.
Mediana
p = (n/2)
Es la posición en donde se encuentra la mediana.
Se ubica en la tabla el primer valor de frecuencia acumulada mayor a la posición calculada, si ese valor es mayor, entonces la mediana es la clase correspondiente al mismo. Si el valor es igual a la posición, entonces se suman el valor anterior más el valor obtenido y se divide entre 2.
Moda Se obtiene el valor por observación de la mayor frecuencia
Rango Medio (Valor máximo + Valor Mínimo) / 2
Aplicando, se obtienen los siguientes valores:
Para la media:
_ 12 * 1 + 14 * 2 + 15 * 6 + 16 * 5 + 17 * 7 + 18 * 4 + 19 * 4 + 23 * 1 12 + 28 + 90 + 80 + 119 + 72 + 76 + 23
X = -------------------------------------------------------------------------------------------- = ---------------------------------------------------------------
30 30
_ 500
X = ------------ = 16.6667
30
Para la Mediana, utilizaremos la frecuencia acumulada:
Clase Frecuencia Frecuencia Acumulada
12 1 1
14 2 3
15 6 9
16 5 14
17 7 21
18 4 27
19 4 29
23 1 30
Total 30
Como n = 30, utilizaremos la posición p = (30/2)
...