Numeros Reales
Enviado por sensores • 1 de Junio de 2013 • 2.076 Palabras (9 Páginas) • 277 Visitas
LOS NUMEROS REALES.
Los números reales (designados por ) incluyen tanto a los números racionales, positivos, negativos y el cero, como a los números irracionales, trascendentes y algebraicos, que no se pueden expresar de manera fraccionaria y tienen infinitas cifras decimales no periódicas, tales como: .
Los números reales pueden ser descritos y construidos de varias formas, algunas simples aunque carentes del rigor necesario para los propósitos formales de matemáticas y otras más complejas pero con el rigor necesario para el trabajo matemático formal.
Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base rigurosa, puesto que en el momento no se consideraba necesario el formalismo de la actualidad, y se usaban expresiones como pequeño, límite, se acerca, sin una definición precisa. Esto llevó a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de crear una base rigurosa para la matemática, la cual consistió de definiciones formales y rigurosas, aunque ciertamente técnicas del concepto de número real En una sección posterior se describirán dos de las definiciones precisas más usuales actualmente: clases de equivalencia de sucesiones de Cauchy de números racionales y cortaduras de Dedekind
Diferentes clases de números reales.
Recta real.
El estudio riguroso de la construcción total de los números reales exige tener amplios antecedentes de teoría de conjuntos y lógica matemática. Fue lograda la construcción y sistematización de los números reales en el siglo XIX por dos grandes matemáticos europeos utilizando vías distintas: la teoría de conjuntos de Georg Cantor (encajamientos sucesivos, cardinales finitos e infinitos), por un lado, y el análisis matemático de Richard Dedekind (vecindades, entornos y cortaduras de Dedekind). Ambos matemáticos lograron la sistematización de los números reales en la historia, no de manera espontánea, sino utilizando todos los avances previos en la materia: desde la antigua Grecia y pasando por matemáticos como Descartes, Newton, Leibniz, Euler, Lagrange, Gauss, Riemann, Cauchy y Weierstrass.
Después se desarrollo una geometría basada en comparaciones (proporciones) de segmentos sin hacer referencia a valores numéricos, usando diversas teorías para manejar el caso de medidas inconmensurables, como la teoría de proporciones de Eudoxo. Así, los números irracionales permanecieron a partir de entonces excluidos de la aritmética puesto que sólo podían ser tratados mediante el método de infinitas aproximaciones.
Dado que las longitudes que expresan los números irracionales podían ser obtenidas mediante procesos geométricos sencillos pero, aritméticamente, sólo mediante procesos de infinitas aproximaciones, originó que durante 2000 años la teoría de los números reales fuese esencialmente geométrica, identificando los números reales con los puntos de una línea recta. Nuevos avances en el concepto de número real esperaron hasta los siglos XVI y XVII, con el desarrollo de la notación algebraica, lo que permitió la manipulación y operación de cantidades sin hacer referencia a segmentos y longitudes. Por ejemplo, se encontraron fórmulas para resolver ecuaciones de segundo y tercer grado de forma mecánica mediante algoritmos, los cuales incluían raíces e incluso, en ocasiones, «números no reales» (lo que ahora conocemos como números complejos). Sin embargo, no existía aún un concepto formal de número y se seguía dando primacía a la geometría como fundamento de toda la matemática. Incluso con el desarrollo de la geometría analítica este punto de vista se mantenía vigente, pues Descartes rechazaba la idea que la geometría pudiera fundamentarse en números, puesto que para él la nueva área era simplemente una herramienta para resolver problemas geométricos. Posteriormente, la invención del cálculo abrió un período de grandes avances matemáticos, con nuevos y poderosos métodos que permitieron por vez primera atacar los problemas relacionados con lo infinito mediante el concepto de límite. Así, un número irracional pudo ser entendido como el límite de una suma infinita de números racionales (por ejemplo, su expansión decimal). Como muestra, el número π puede estudiarse de forma algebraica (sin apelar a la intuición geométrica) mediante la serie:
Para entonces, el concepto intuitivo de número real era ya el moderno, identificando sin problema un segmento con la medida de su longitud (racional o no). El cálculo abrió el paso al análisis matemático, que estudia conceptos como continuidad, convergencia, etc.
. Notación de números reales.
Los números reales se expresan con fracciones decimales que tienen una secuencia infinita de dígitos a la derecha de la coma decimal, como por ejemplo 324,8232. Frecuentemente también se sub representan con tres puntos consecutivos al final (324,823211247…), lo que significaría que aún faltan más dígitos decimales, pero que se consideran sin importancia.
Las medidas en las ciencias físicas son siempre una aproximación a un número real. No sólo es más conciso escribirlos con forma de fracción decimal (es decir, números racionales que pueden ser escritos como proporciones, con un denominador exacto) sino que, en cualquier caso, cunde íntegramente el concepto y significado del número real. En el análisis matemático los números reales son objeto principal de estudio. Puede decirse que los números reales son la herramienta de trabajo de las matemáticas de la continuidad, como el cálculo y el análisis matemático, mientras que los números enteros lo son de las matemáticas discretas, en las que está ausente la continuidad.
Se dice que un número real es recursivo si sus dígitos se pueden expresar por un algoritmo recursivo. Un número no-recursivo es aquél que es imposible de especificar explícitamente. Aun así, la escuela rusa de constructivismo supone que todos los números reales son recursivos.
Los ordenadores sólo pueden aproximarse a los números reales por números racionales; de todas maneras, algunos programas de ordenador pueden tratar un número real de manera exacta usando su definición algebraica (por ejemplo, " ") en vez de su respectiva aproximación decimal.
Los matemáticos usan el símbolo (o, de otra forma, , la letra "R" en negrita) para representar el conjunto de todos los números reales.
La notación matemática se refiere a un espacio de dimensiones de los números reales; por ejemplo, un valor consiste de tres números reales y determina un lugar en un espacio de tres dimensiones.
Tipos de números reales.
Un número real puede ser un número racional
...