ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Polinomios


Enviado por   •  2 de Diciembre de 2014  •  794 Palabras (4 Páginas)  •  189 Visitas

Página 1 de 4

En matemáticas, un polinomio (del latín polynomius, y este del griego, πολυς [polys] ‘muchos’ y νόμος [nómos] ‘regla’, ‘prescripción’, ‘distribución’)1 2 3 es una expresión matemática constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. En términos más precisos, es una relación n-aria de monomios, o una sucesión de sumas y restas de potencias enteras de una o de varias variables indeterminadas.

Es frecuente el término polinómico (ocasionalmente también el anglicismo polinomial), como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinómico, etc.

Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizados en cálculo y análisis matemático para aproximar cualquier función derivable; las ecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde la matemática elemental y el álgebra hasta áreas como la física, química, economía y las ciencias sociales.

En álgebra abstracta, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en teoría de números algebraicos y geometría algebraica.

Índice [ocultar]

1 Definición algebraica

1.1 Polinomios de una variable

1.2 Polinomios de varias variables

1.3 Grado de un polinomio

2 Operaciones con polinomios

3 Funciones polinómicas

3.1 Ejemplos de funciones polinómicas

4 Factorización de polinomios

5 Historia

6 Véase también

7 Referencias

8 Enlaces externos

Definición algebraica[editar]

Los polinomios están constituidos por un conjunto finito de variables (no determinadas o desconocidas) y constantes (llamadas coeficientes), con las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. Pueden ser de una o de varias variables.

Polinomios de una variable[editar]

Para a0, …, an constantes en algún anillo A (en particular podemos tomar un cuerpo, como \scriptstyle\mathbb{R} o \scriptstyle\mathbb{C}, en cuyo caso los coeficientes del polinomio serán números) con an distinto de cero y n \in \mathbb{N}, entonces un polinomio, P_{}^{}, de grado n en la variable x es un objeto de la forma

P(x)_{}^{} = a_n x^n + a_{n-1} x^{n - 1}+ \cdots + a_1 x^{1} + a_0 x^{0}.

Un polinomio P(x) \in K[x] no es más que una sucesión matemática finita \left\{{a_n}\right\}_n tal que a_n \in K.

Representado como:

P(x)_{}^{}=a_0+a_1x+a_2x^2+...+a_nx^n

el polinomio se puede escribir más concisamente usando sumatorios como:

P(x) = \sum_{i = 0}^{n} a_{i} x^{i}.

Las

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com