Propiedades De Los Materiales
Enviado por hlaiiikllo • 16 de Abril de 2015 • 3.224 Palabras (13 Páginas) • 393 Visitas
Introducción:
Las propiedades mecánicas fundamentales son la resistencia, la rigidez, la elasticidad, la plasticidad y la capacidad energética.
La resistencia de un material se mide por el esfuerzo según el cual desarrolla alguna condición limitativa específica. Las principales condiciones limitativas o criterios de falla son la terminación de la acción elástica y la ruptura.
La dureza, usualmente indicada por la resistencia a la penetración o la abrasión en la superficie de un material, puede considerarse como un tipo o una medida particular de la resistencia.
La rigidez tiene que ver con la magnitud de la deformación que ocurre bajo la carga; dentro del rango del comportamiento elástico, la rigidez se mide por el módulo de elasticidad.
La elasticidad se refiere a la capacidad de un material de deformarse no permanentemente al retirar el esfuerzo. El término plasticidad se usa para indicar la capacidad de deformación en el rango elástico o plástico sin que ocurra ruptura; un ejemplo de medición de la plasticidad es la ductilidad de algunos metales, llamados dúctiles. La capacidad de un material para absorber energía elástica depende de la resistencia y la rigidez; por ejemplo, la capacidad energética en el rango de acción elástica se denomina resiliencia; la energía requerida para romper un material se denomina tenacidad.
Propiedades Mecánicas De Los Materiales.
Resistencia mecánica: la resistencia mecánica de un material es su capacidad de resistir fuerzas o esfuerzos. Los tres esfuerzos básicos son:
• Esfuerzo de Tensión:
Es aquel que tiende a estirar el miembro y romper el material. Donde las fuerzas que actúan sobre el mismo tienen la misma dirección, magnitud y sentidos opuestos hacia fuera del material. Como se muestra en la siguiente figura. Y viene dado por la siguiente fórmula:
• Esfuerzo de compresión:
Es aquel que tiende aplastar el material del miembro de carga y acortar al miembro en sí. Donde las fuerzas que actúan sobre el mismo tienen la misma dirección, magnitud y sentidos opuestos hacia dentro del material. Como se muestra en la siguiente figura. Y viene dado por la siguiente fórmula:
• Esfuerzo cortante:
Este tipo de esfuerzo busca cortar el elemento, esta fuerza actúa de forma tangencial al área de corte. Como se muestra en la siguiente figura. Y viene dado por la siguiente fórmula:
Esfuerzo a tracción y compresión
Esfuerzo a tracción
La intensidad de la fuerza (o sea, la fuerza por área unitaria) se llama esfuerzo, las fuerzas internas de un elemento están ubicadas dentro del material por lo que se distribuyen en toda el área, la cual se denota con la letra σ (sigma), estas hacen que se separen entre si las distintas partículas que componen una pieza, si tienden a alargarla y estas se encuentran en sentido opuesto se llama esfuerzo de tracción.
Esfuerzo de tracción (+).
Esfuerzo a compresión
El esfuerzo de compresión es el resultante de las tensiones o presiones que existe dentro de un sólido deformable, se caracteriza porque tiende a una reducción de volumen o acortamiento en determinada dirección, ya que las fuerzas invertidas ocasionan que el material quede comprimido, también es el esfuerzo que resiste el acortamiento de una fuerza de compresión.
Esfuerzo de compresión (-)
Cuando se requiere una convención de signos para los esfuerzos, se explica de tal manera, el signo del esfuerzo de tensión es dado por el sentido de la fuerza, por ejemplo en la cara superior del cubo mostrado en la figura anterior, es en sentido opuesto a la convención de magnitudes de fuerza, o hacia abajo, por lo tanto el esfuerzo es negativo (-), con la fuerza aplicada en este sentido se dice que es esfuerzo de compresión. Si la fuerza estuviera representada en sentido opuesto, es decir hacia arriba el esfuerzo sería positivo (+), si la fuerza es aplicada en este sentido se dice que es un esfuerzo de tracción. Debido a que los esfuerzos actúan en una dirección perpendicular a la superficie cortada, se llaman esfuerzos normales.
σ = P / A
Dónde:
P: Fuerza axial;
A: Área de la sección transversal.
Esta ecuación da la intensidad del esfuerzo, sólo es valida si el esfuerzo está uniformemente distribuido sobre la sección transversal. Esta condición se cumple si la fuerza axial P actúa a través del centroide del área donde se encuentra aplicada la fuerza.
Ejemplo 1.
Un poste corto construido con un tubo circular hueco de aluminio, soporta una carga de compresión de 54 kips (Fig. 1). Los diámetros interior y exterior del tubo son d1=36 in y d2= 3.6 in, respectivamente y su longitud es de 40 in. Hay que determinar el esfuerzo de compresión.
Poste hueco de aluminio en compresión.
Solución:
Suponiendo que la carga de compresión actúa en el centro del tubo hueco, podemos usar la ecuación σ= P ⁄ A para calcular el esfuerzo normal. La fuerza P es igual a 54 k (o 54 000 lb) y el área A de la sección transversal es:
A= (π /4) · (d2²-d1²) = (π / 4) · [(5.0 in) ² – (3.6 in) ²] = 9.456 in²
Por lo tanto, el esfuerzo de compresión en el poste es:
σ = P / A = 54 000 lb / 9.456 in² =5710 psi.
Si la fuerza tuviera sentido opuesto al mostrado en la figura 3, el esfuerzo seria de tensión o tracción, ya que tiende a alargar el poste, este tendría la misma magnitud, ya que la fuerza P es la misma, pero en otra dirección y el área transversal A si es exactamente la calculada anteriormente.
Rigidez:
La rigidez es la capacidad de un objeto material para soportar esfuerzos sin adquirir grandes deformaciones y/o desplazamientos. Los coeficientes de rigidez son magnitudes físicas que cuantifican la rigidez de un elemento resistente bajo diversas configuraciones de carga. Normalmente las rigideces se calculan como la razón entre una fuerza aplicada y el desplazamiento obtenido por la aplicación de esa fuerza.
Elasticidad:
Es la propiedad de un material que le permite regresar a su tamaño y formas originales, al suprimir la carga a la que estaba sometido. Esta propiedad varía mucho en los diferentes materiales que existen. Para ciertos materiales existe un esfuerzo unitario más allá del cual, el material no recupera sus dimensiones originales al suprimir la carga. A este esfuerzo unitario se le conoce como Límite Elástico.
No se conocen materiales que sean perfectamente elásticos a través del rango de esfuerzos completo hasta la ruptura, aunque algunos
...