Pseudocodigo
Enviado por briamR2 • 12 de Abril de 2013 • 2.091 Palabras (9 Páginas) • 669 Visitas
Propiedades
Las propiedades de un fluido son las que definen el comportamiento y características del mismo tanto en reposo como en movimiento. Existen propiedades primarias y propiedades secundarias del fluido.
Propiedades primarias
Propiedades primarias o termodinámicas:
• Presión: La presión es la magnitud vectorial que relaciona la fuerza con la superficie sobre la que actúa, es decir, equivale a la fuerza que actúa sobre la unidad de superficie.
Densidad: En física y química, la densidad (símbolo ρ) es una magnitud escalar referida a la cantidad de masa contenida en un determinado volumen de una sustancia. La densidad media es la razón entre la masa de un cuerpo y el volumen que ocupa.
• Temperatura: La temperatura es una magnitud referida a las nociones comunes de caliente, tibio o frío que puede ser medida con un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.Energía interna: En física, la energía interna (U) de un sistema intenta ser un reflejo de la energía a escala macroscópica. Más concretamente, es la suma de:
1. la energía cinética interna, es decir, de las sumas de las energías cinéticas de las individualidades que lo forman respecto al centro de masas del sistema, y dela energía potencial interna, que es la energía potencial asociada a las interacciones entre estas individualidades.
2. La energía interna no incluye la energía cinética traslacional o rotacional del sistema como un todo. Tampoco incluye la energía potencial que el cuerpo pueda tener por su localización en un campo gravitacional o electrostático externo.
• Entalpía: es una función de estado de la termodinámica donde la variación permite expresar la cantidad de calor puesto en juego durante una transformación isobárica (es decir, a presión constante) en un sistema termodinámico (teniendo en cuenta que todo objeto conocido puede ser entendido como un sistema termodinámico), transformación en el curso de la cual se puede recibir o aportar energía (por ejemplo la utilizada para un trabajo mecánico). En este sentido la entalpía es numéricamente igual al calor intercambiado con el ambiente exterior al sistema en cuestión.
• Entropía: En termodinámica, la entropía (simbolizada como S) es una magnitud física que, mediante cálculo, permite determinar la parte de laenergía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural.
• Calores específicos: El calor específico es una magnitud física que se define como la cantidad de calor que hay que suministrar a la unidad de masa de una sustancia o sistema termodinámico para elevar su temperatura en una unidad (kelvin o grado Celsius). En general, el valor del calor específico depende de dicha temperatura inicial.1 2 Se le representa con la letra (minúscula).De forma análoga, se define la capacidad calorífica como la cantidad de calor que hay que suministrar a toda la masa de una sustancia para elevar su temperatura en una unidad (kelvin o grado Celsius). Se la representa con la letra (mayúscula).
• Viscosidad: La viscosidad es la oposición de un fluido a las deformaciones tangenciales. Un fluido que no tiene viscosidad se llama fluido ideal. En realidad todos los fluidos conocidos presentan algo de viscosidad, siendo el modelo de viscosidad nula una aproximación bastante buena para ciertas aplicaciones. La viscosidad sólo se manifiesta en líquidos en movimiento.
• Peso y volumen específico: Se le llama Peso específico a la relación entre el peso de una sustancia y su volumen.Su expresión de cálculo es:
El volumen específico ( ) es el volumen ocupado por unidad de masa de un material. Es la inversa de la densidad, por lo cual no dependen de la cantidad de materia. Ejemplos: dos pedazos de hierro de distinto tamaño tienen diferente peso y volumen pero el peso específico de ambos sera igual. Este es independiente de la cantidad de materia que es considerada para calcularlo. A las propiedades que no dependen de la cantidad de materia se las llama propiedades intensivas; dentro de estas están también por ejemplo el punto de fusión, punto de ebullición, el brillo, elcolor, la dureza, etc.
Donde, es el volumen, es la masa y es la densidad del material.
Propiedades secundarias
Caracterizan el comportamiento específico de los fluidos.
• Viscosidad: La viscosidad es la oposición de un fluido a las deformaciones tangenciales. Un fluido que no tiene viscosidad se llama fluido ideal. En realidad todos los fluidos conocidos presentan algo de viscosidad, siendo el modelo de viscosidad nula una aproximación bastante buena para ciertas aplicaciones. La viscosidad sólo se manifiesta en líquidos en movimiento.
• Conductividad térmica: La conductividad térmica es una propiedad física de los materiales que mide la capacidad de conducción de calor. En otras palabras la conductividad térmica es también la capacidad de una sustancia de transferir la energía cinética de sus moléculas a otras moléculas adyacentes o a substancias con las que no está en contacto. En el Sistema Internacional de Unidades la conductividad térmica se mide en W/(K•m) ( equivalente a J/(s•°C•m) )La conductividad térmica es una magnitud intensiva. Su magnitud inversa es la resistividad térmica, que es la capacidad de los materiales para oponerse al paso del calor. Para un material isótropo la conductividad térmica es un escalar k definido como:
• Tensión superficial: En física se denomina tensión superficial de un líquido a la cantidad de energía necesaria para aumentar su superficie por unidad de área.1 Esta definición implica que el líquido tiene una resistencia para aumentar su superficie. Este efecto permite a algunos insectos, como el zapatero (Gerris lacustris), desplazarse por la superficie del agua sin hundirse. La tensión superficial (una manifestación de las fuerzas intermoleculares en los líquidos), junto a las
...