Que Son Los Numeros Reales
Enviado por 19900102 • 8 de Diciembre de 2013 • 3.212 Palabras (13 Páginas) • 508 Visitas
¿Que son los Numeros Naturales?
Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto.Los números naturales son infinitos. El conjunto de todos ellos se designa por N:
N = {0, 1, 2, 3, 4,…, 10, 11, 12,…}
El cero, a veces, se excluye del conjunto de los números naturales.
Además de cardinales (para contar), los números naturales son ordinales, pues sirven para ordenar los elementos de un conjunto:
1º (primero), 2º (segundo),…, 16º (decimosexto),…
Los números naturales son los primeros que surgen en las distintas civilizaciones, ya que las tareas de contar y de ordenar son las más elementales que se pueden realizar en el tratamiento de las cantidades.
Entre los números naturales están definidas las operaciones adición y multiplicación. Además, el resultado de sumar o de multiplicar dos números naturales es también un número natural, por lo que se dice que son operaciones internas.
La sustracción, sin embargo, no es una operación interna en N, pues la diferencia de dos números naturales puede no ser un número natural (no lo es cuando el sustraendo es mayor que el minuendo). Por eso se crea el conjunto Z de los números enteros, en el que se puede restar un número de otro, cualesquiera que sean éstos.
La división tampoco es una operación interna en N, pues el cociente de dos números naturales puede no ser un número natural (no lo es cuando el dividendo no es múltiplo del divisor). Por eso se crea el conjunto Q de los números racionales, en el que se puede dividir cualquier número por otro (salvo por el cero). La división entera es un tipo de división peculiar de los números naturales en la que además de un cociente se obtiene un resto
Números de contar
Los números de contar son los números naturales, normalmente sin el cero. Porque no se puede "contar" cero. Así que son 1, 2, 3, 4, 5, … (y eso).
Enteros
Los enteros son como los naturales, pero se incluyen los números negativos ... ¡también sin fracciones!
Así que un entero puede ser negativo (-1, -2,-3, -4, -5, … ), positivo (1, 2, 3, 4, 5, … ), o cero (0)
Números Racionales
Los números racionales, son el conjunto de números fraccionarios y números enteros representados por medio de fracciones. Este conjunto está situado en la recta real numérica pero a diferencia de los números naturales que son consecutivos, por ejemplo a 4 le sigue 5 y a este a su vez le sigue el 6, y los números negativos cuya consecución se da así, a -9 le sigue -8 y a este a su vez le sigue -7; los números racionales no poseen consecución pues entre cada número racional existen infinitos números que solo podrían ser escritos durante toda la eternidad.
Todos los números fraccionarios son números racionales, y sirven para representar medidas. Pues a veces es más conveniente expresar un número de esta manera que convertirlo a decimal exacto o periódico, debido a la gran cantidad de decimales que se podrían obtener.
Definición de números racionales
Para decir, ¿Qué son números racionales? Podemos empezar por decir que, un número racional es una cifra o valor que puede ser referido como el cociente de dos números enteros o más precisamente, un número entero y un número natural positivo. Es decir que es un número racional, es un número que se escribe mediante una fracción.
Los números racionales son números fraccionarios, sin embargo los números enteros también pueden ser expresados como fracción, por lo tanto también pueden ser tomados como números racionales con el simple hecho de dar un cociente entre el número entero y el número 1 como denominador.
Al conjunto de los números racionales se lo denota con la letra Q, que viene de la palabra anglosajona “Quotient” traducción literal de cociente, y que sirve para recogerlos como subgrupo dentro de los números reales y junto a los números enteros cuya denotación es la letra Z. Por ello, en ocasiones se refieren a los números racionales como números Q.
Un número racional puede ser expresado de diferentes maneras, sin alterar su cantidad mediante fracciones equivalentes, por ejemplo ½ puede ser expresado como 2/4 o 4/8, debido a que estas son fracciones reducibles. Asimismo existe una clasificación de los números racionales dependiendo de su expresión decimal, estos son:
Los números racionales limitados, cuya representación decimal tiene un número determinado y fijo de cifras, por ejemplo 1/8 es igual a 0,125.
Los números racionales periódicos, de los cuales sus decimales tienen un número ilimitado de cifras, pero se diferencian de los números irracionales porque de esas cifras se puede descubrir un patrón definido mientras que en los números irracionales sus cifras decimales son infinitas y no-periódicas.
Ejemplos
-3 es un número entero y racional
porque se puede poner en forma
de fracción así:-3/1
2/5 es un número racional
porque ya está expresado en forma de
fracción.
12/4 es un número racional puesto que está expresado en forma de
fracción, y además como la división es exacta y da 3, también es un
número natural o entero positivo.
0,12121212.... es un
número racional
porque se puede poner en
forma de fracción así: 12/99
Números Irracionales
El concepto de números irracionales proviene de la Escuela Pitagórica, que descubrió la existencia de números irracionales, es decir que no eran enteros ni racionales como fracciones. Esta escuela, los llamó en primer lugar números inconmensurables.
Definición de números irracionales
¿Qué son números irracionales? Los números irracionales tienen como definición que son números que poseen infinitas cifras decimales no periódicas, que por lo tanto no pueden ser expresados como fracciones.
Estos números pueden haber sido descubiertos al tratar de resolver la longitud de un cuadrado según el Teorema de Pitágoras, siendo el resultado el número
2√
, o raíz cuadrada de dos, el ejemplo de números irracionales más claro e inmediato, cuya respuesta a su vez posee infinitas cifras decimales que al no poder ser fraccionado, fue llamado irracional, en el sentido de no poder escribirlo como una ración o varias raciones o fracciones.
Para distinguir los números irracionales de los racionales, debemos tomar en cuenta que los números racionales si se pueden escribir de manera fraccionada o racional, por ejemplo: 18/5 que es igual a 3,6 por lo tanto es un
...