Representación gráfica de la distancia entre dos puntos
Enviado por corstengonale • 5 de Febrero de 2015 • 245 Palabras (1 Páginas) • 202 Visitas
Representación gráfica de la distancia entre dos puntos
Cuando los puntos se encuentran ubicados sobre el eje x o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas.
Demostración
Sean P1 (x1, y1) y P2 (x2, y2) dos puntos en el plano.
La distancia entre los puntos P1 y P2 denotada por d = Distancia006 esta dada por:
Distancia008(1)
En la Figura 1 hemos localizado los puntos P1 (x1, y1) y P2 (x2, y2) así como también el segmento de recta Distancia009
Distancia010
Figura 1
Al trazar por el punto P1 una paralela al eje x (abscisas) y por P2 una paralela al eje y (ordenadas), éstas se interceptan en el puntoR, determinado el triángulo rectángulo P1RP2 y en el cual podemos aplicar el Teorema de Pitágoras:
Distancia011
Pero: Distancia013 ;
Distancia015 y Distancia016
Luego, Distancia018
Distancia020
Ejemplo: La distancia entre los puntos (-4,0) y (5,0) es 4 + 5 = 9 unidades.
Cuando los puntos se encuentran ubicados sobre el eje y o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas.
Ahora si los puntos se encuentran en cualquier lugar del sistema de coordenadas, la distancia queda determinada por la relación:
Para demostrar esta relación se deben ubicar los puntos A(x1,y1) y B(x2,y2) en el sistema de coordenadas, luego formar un triángulo rectángulo de hipotenusa AB y emplear el teorema de pitágoras.
Ejemplo: Calcula la distancia entre los puntos A(7,5) y B (4,1)
d = 5 unidades
...