SECCIÓN CÓNICA
Enviado por 3574 • 26 de Febrero de 2014 • Examen • 856 Palabras (4 Páginas) • 224 Visitas
SECCIÓN CÓNICA
Los cuatro ejemplos de intersección de un plano con un cono: parábola (1), elipse y circunferencia (2) e hipérbola (3).
Se denomina sección cónica (o simplemente cónica) a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos: elipse, parábola, hipérbola y circunferencia.
TIPOS
Perspectiva de las secciones cónicas.
Las cuatro secciones cónicas en el plano.
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:
• β < α : Hipérbola (naranja)
• β = α : Parábola (azulado)
• β > α : Elipse (verde)
• β = 90º: Circunferencia (un caso particular de elipse) (rojo)
Si el plano pasa por el vértice del cono, se puede comprobar que:
• Cuando β > α la intersección es un único punto (el vértice).
• Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono).
• Cuando β < α la intersección vendrá dada por dos rectas que se cortan en el vértice.
• cuando β = 90º El ángulo formado por las rectas irá aumentando a medida β disminuye, hasta alcanzar el máximo (α) cuando el plano contenga al eje del cono (β = 0).
EXPRESIÓN ALGEBRAICA
Partiendo de una circunferencia (e=0), al aumentar la excentricidad se obtienen elipses, parábolas e hipérbolas.
En coordenadas cartesianas, las cónicas se expresan en forma algebraica mediante ecuaciones cuadráticas de dos variables (x,y) de la forma:
En la que, en función de los valores de los parámetros, se tendrá:
h² > ab: hipérbola.
h² = ab: parábola.
h² < ab: elipse.
a = b y h = 0: circunferencia.
Características
La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es constante.
Además de los focos F y F´, en una elipse destacan los siguientes elementos:
• Centro, O
• Eje mayor, AA´
• Eje menor, BB´
• Distancia focal, OF
La elipse con centro (0, 0) tiene la siguiente expresión algebraica:
La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante y menor que la distancia entre los focos.
Tiene dos asíntotas (rectas cuyas distancias a la curva tienden a cero cuando la curva se aleja hacia el infinito). Las hipérbolas cuyas asíntotas son perpendiculares se llaman hipérbolas equiláteras.
Además de los focos y de las asíntotas, en la hipérbola destacan los siguientes elementos:
• Centro, O
• Vértices, A y A
• Distancia entre los vértices
• Distancia entre los focos
La ecuación de una hipérbola
...