ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

SECCIÓN CÓNICA


Enviado por   •  26 de Febrero de 2014  •  Examen  •  856 Palabras (4 Páginas)  •  229 Visitas

Página 1 de 4

SECCIÓN CÓNICA

Los cuatro ejemplos de intersección de un plano con un cono: parábola (1), elipse y circunferencia (2) e hipérbola (3).

Se denomina sección cónica (o simplemente cónica) a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos: elipse, parábola, hipérbola y circunferencia.

TIPOS

Perspectiva de las secciones cónicas.

Las cuatro secciones cónicas en el plano.

En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:

• β < α : Hipérbola (naranja)

• β = α : Parábola (azulado)

• β > α : Elipse (verde)

• β = 90º: Circunferencia (un caso particular de elipse) (rojo)

Si el plano pasa por el vértice del cono, se puede comprobar que:

• Cuando β > α la intersección es un único punto (el vértice).

• Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono).

• Cuando β < α la intersección vendrá dada por dos rectas que se cortan en el vértice.

• cuando β = 90º El ángulo formado por las rectas irá aumentando a medida β disminuye, hasta alcanzar el máximo (α) cuando el plano contenga al eje del cono (β = 0).

EXPRESIÓN ALGEBRAICA

Partiendo de una circunferencia (e=0), al aumentar la excentricidad se obtienen elipses, parábolas e hipérbolas.

En coordenadas cartesianas, las cónicas se expresan en forma algebraica mediante ecuaciones cuadráticas de dos variables (x,y) de la forma:

En la que, en función de los valores de los parámetros, se tendrá:

h² > ab: hipérbola.

h² = ab: parábola.

h² < ab: elipse.

a = b y h = 0: circunferencia.

Características

La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es constante.

Además de los focos F y F´, en una elipse destacan los siguientes elementos:

• Centro, O

• Eje mayor, AA´

• Eje menor, BB´

• Distancia focal, OF

La elipse con centro (0, 0) tiene la siguiente expresión algebraica:

La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante y menor que la distancia entre los focos.

Tiene dos asíntotas (rectas cuyas distancias a la curva tienden a cero cuando la curva se aleja hacia el infinito). Las hipérbolas cuyas asíntotas son perpendiculares se llaman hipérbolas equiláteras.

Además de los focos y de las asíntotas, en la hipérbola destacan los siguientes elementos:

• Centro, O

• Vértices, A y A

• Distancia entre los vértices

• Distancia entre los focos

La ecuación de una hipérbola

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com