Teoria De Restricciones
Enviado por ensastiga • 21 de Febrero de 2015 • 1.360 Palabras (6 Páginas) • 650 Visitas
MÉTODO SIMPLEX PASO A PASO
________________________________________
EL PROBLEMA
La empresa el SAMÁN Ltda. Dedicada a la fabricación de muebles, ha ampliado su producción en dos líneas más. Por lo tanto actualmente fabrica mesas, sillas, camas y bibliotecas. Cada mesa requiere de 2 piezas rectangulares de 8 pines, y 2 piezas cuadradas de 4 pines. Cada silla requiere de 1 pieza rectangular de 8 pines y 2 piezas cuadradas de 4 pines, cada cama requiere de 1 pieza rectangular de 8 pines, 1 cuadrada de 4 pines y 2 bases trapezoidales de 2 pines y finalmente cada biblioteca requiere de 2 piezas rectangulares de 8 pines, 2 bases trapezoidales de 2 pines y 4 piezas rectangulares de 2 pines. Cada mesa cuesta producirla $10000 y se vende en $ 30000, cada silla cuesta producirla $ 8000 y se vende en $ 28000, cada cama cuesta producirla $ 20000 y se vende en $ 40000, cada biblioteca cuesta producirla $ 40000 y se vende en $ 60000. El objetivo de la fábrica es maximizar las utilidades.
Problema planteado por Héctor Angulo - Ingeniero Industrial
PASO 1: MODELACIÓN MEDIANTE PROGRAMACIÓN LINEAL
Las variables:
X1 = Cantidad de mesas a producir (unidades)
X2 = Cantidad de sillas a producir (unidades)
X3 = Cantidad de camas a producir (unidades)
X4 = Cantidad de bibliotecas a producir (unidades)
Las restricciones:
2X1 + 1X2 + 1X3 + 2X4 <= 24
2X1 + 2X2 + 1X3 <= 20
2X3 + 2X4 <= 20
4X4 <= 16
La función Objetivo:
ZMAX = 20000X1 + 20000X2 + 20000X3 + 20000X4
PASO 2: CONVERTIR LAS INECUACIONES EN ECUACIONES
En este paso el objetivo es asignar a cada recurso una variable de Holgura, dado que todas las restricciones son "<=".
2X1 + 1X2 + 1X3 + 2X4 + 1S1 + 0S2 + 0S3 + 0S4 = 24
2X1 + 2X2 + 1X3 + 0X4 + 0S1 + 1S2 + 0S3 + 0S4 = 20
0X1 + 0X2 + 2X3 + 2X4 + 0S1 + 0S2 + 1S3 + 0S4 = 20
0X1 + 0X2 + 0X3 + 4X4 + 0S1 + 0S2 + 0S3 + 1S4 = 16
De esta manera podemos apreciar una matriz identidad (n = 4), formado por las variables de holgura las cuales solo tienen coeficiente 1 en su respectivo recurso, por el ejemplo la variable de holgura "S1" solo tiene coeficiente 1 en la restricción correspondiente a el recurso 1.
La función objetivo no sufre variaciones:
ZMAX = 20000X1 + 20000X2 + 20000X3 + 20000X4
PASO 3: DEFINIR LA SOLUCIÓN BÁSICA INICIAL
El Método Simplex parte de una solución básica inicial para realizar todas sus iteraciones, esta solución básica inicial se forma con las variables de coeficiente diferente de cero (0) en la matriz identidad.
1S1 = 24
1S2 = 20
1S3 = 20
1S4 = 16
PASO 4: DEFINIR LA TABLA SIMPLEX INICIAL
www.ingenieriaindustrialonline.com
Solución: (segundo término)= En esta fila se consigna el segundo término de la solución, es decir las variables, lo más adecuado es que estas se consignen de manera ordenada, tal cual como se escribieron en la definición de restricciones.
Cj = La fila "Cj" hace referencia al coeficiente que tiene cada una de las variables de la fila "solución" en la función objetivo.
Variable Solución = En esta columna se consigna la solución básica inicial, y a partir de esta en cada iteración se van incluyendo las variables que formarán parte de la solución final.
Cb = En esta fila se consigna el valor que tiene la variable que se encuentra a su derecha "Variable solución" en la función objetivo.
Zj = En esta fila se consigna la contribución total, es decir la suma de los productos entre término y Cb.
Cj
...