CONCEPTOS BÁSICOS DE PROBABILIDAD
Enviado por Ulises22 • 21 de Junio de 2013 • 277 Palabras (2 Páginas) • 409 Visitas
CONCEPTOS BÁSICOS DE PROBABILIDAD
Experimento aleatorio: conjunto de pruebas cuyos resultados están determinados únicamente por el azar.
Espacio muestral: conjunto de todos los resultados posibles de un experimento aleatorio
Punto muestral o suceso elemental: el resultado de una sola prueba de un experimento muestral
Suceso o evento: cualquier subconjunto de puntos muestrales
Sucesos mutuamente excluyentes: sucesos o eventos que no pueden ocurrir simultaneamente .
Sucesos complementarios: dos sucesos o eventos mutuamente excluyentes cuya unión es el espacio muestral
Sucesos independientes: sucesos o eventos que no tienen relación entre sí; la ocurrencia de uno no afecta la ocurrencia del otro
Sucesos dependientes: sucesos o eventos que sí tienen relación entre sí; la ocurrencia de uno sí afecta la ocurrencia del otro.
EJEMPLO: Se lanza un dado.
a) Encontrar el espacio muestral. Solución: S = {1, 2, 3, 4, 5, 6}
b) Enumerar los puntos muestrales. Solución: Hay seis puntos muestrales: {1},{2},{3},{4},{5} y {6}.
c) Poner dos ejemplos de eventos. Solución: evento A = {resultado es impar} = {1, 3, 5}; evento B = {resultado es mayor que 2} = {3, 4, 5, 6}
d) ¿Son mutuamente excluyentes los siguientes eventos? A = {resultado menor o igual a 4}, B = {resultado es primo}. Solución: A = {1, 2, 3, 4} y B = {2, 3, 5} sí tienen dos puntos en común, 2 y 3. Por lo tanto, no son mutuamente excluyentes.
e) ¿Cuál suceso es complementario a M = {2, 6}? Solución: {1, 3, 4, 5}.
f) ¿Son dependientes o independientes los siguientes eventos? A = {obtener un 2 un el primer lanzamiento}, B = {obtener un 4 en el segundo lanzamiento}. Solución: Son independientes, porque obtener o no un 2 en el primer lanzamiento no afecta el resultado del segundo lanzamiento.
...