ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Numeros Complejos


Enviado por   •  4 de Marzo de 2014  •  2.086 Palabras (9 Páginas)  •  287 Visitas

Página 1 de 9

Números Complejos

Ilustración del plano complejo. Los números reales se encuentran en el eje de coordenadas horizontal y los imaginarios en el eje vertical.

1. DEFINICIÓN

El término número complejo describe la suma de un número real y un número imaginario (que es un múltiplo real de la unidad imaginaria, que se indica con la letra i). Los números complejos se utilizan en todos los campos de las matemáticas, en muchos de la física (y notoriamente en la mecánica cuántica) y en ingeniería, especialmente en la electrónica y las telecomunicaciones, por su utilidad para representar las ondas electromagnéticas y la corriente eléctrica.

En matemática, los números constituyen un cuerpo y, en general, se consideran como puntos del plano: el plano complejo. La propiedad más importante que caracteriza a los números complejos es el teorema fundamental del álgebra, que afirma que cualquier ecuación algebraica de grado n tiene exactamente n soluciones complejas.

Los números complejos son una extensión de los números reales, cumpliéndose que . Los números complejos representan todas las raíces de los polinomios, a diferencia de los reales.

Los números complejos son la herramienta de trabajo del álgebra ordinaria, llamada álgebra de los números complejos, así como de ramas de las matemáticas puras y aplicadas como variable compleja, aerodinámica y electromagnetismo entre otras de gran importancia.

Contienen a los números reales y los imaginarios puros y constituyen una de las construcciones teóricas más importantes de la inteligencia humana. Los análogos del cálculo diferencial e integral con números complejos reciben el nombre de variable compleja o análisis complejo.

2. ESBOZO HISTÓRICO

La primera referencia conocida a raíces cuadradas de números negativos proviene del trabajo de los matemáticos griegos, como Herón de Alejandría en el siglo I antes de Cristo, como resultado de una imposible sección de una pirámide. Los complejos se hicieron más patentes en el Siglo XVI, cuando la búsqueda de fórmulas que dieran las raíces exactas de los polinomios de grados 2 y 3 fueron encontradas por matemáticos italianos como Tartaglia, Cardano. Aunque sólo estaban interesados en las raíces reales de este tipo de ecuaciones, se encontraban con la necesidad de lidiar con raíces de números negativos. El término imaginario para estas cantidades fue acuñado por Descartes en el Siglo XVII y está en desuso. La existencia de números complejos no fue completamente aceptada hasta la más abajo mencionada interpretación geométrica que fue descrita por Wessel en 1799, redescubierta algunos años después y popularizada por Gauss. La implementación más formal, con pares de números reales fue dada en el Siglo XIX.

3. FORMAS DE REPRESENTAR LOS NÚMEROS COMPLEJOS

 FORMA BINÓMICA.

Podemos considerar C como un espacio vectorial isomorfo a , de este modo se tiene:

Gráficamente, podemos representar (y por tanto C) como un plano.

Para cada número complejo z, la primera componente, x, se denomina parte real y la segunda, y, se denomina parte imaginaria.

Obviamente, dos números complejos son iguales si y sólo si lo son simultáneamente sus partes reales y sus partes imaginarias.

Usando este tipo de representación, la suma de complejos se corresponde con la suma de vectores. Dados dos vectores y su suma es

Se define el módulo de un número complejo como el módulo del vector que lo representa, es decir, si , entonces el módulo de es .

El conjugado de un número complejo se define como su simétrico respecto del eje real, es decir, si , entonces el conjugado de es .

El opuesto de un número complejo es su simétrico respecto del origen.

Es fácil ver que se cumple, , por tanto podemos expresar el inverso de un número en la forma .

En vez de usar coordenadas cartesianas para representar a los puntos del plano podemos usar coordenadas polares, lo que da lugar a la siguiente forma de representación de los números complejos.

 FORMA POLAR O MÓDULO-ARGUMENTO

Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,

donde es el módulo de , y donde  es un argumento de , esto es,  es un ángulo tal que

, .

NOTA: Un número complejo tiene infinitos argumentos distintos. De hecho se puede definir el argumento de un número complejo no nulo como el conjunto de todos los posibles valores  que verifican lo anterior, es decir,

Es claro, por tanto, que si es un valor particular del argumento de , entonces

Se denomina argumento principal al único valor tal que , y se denota

Se verifica entonces que

.

Dos números complejos y , representados en forma polar son iguales si y sólo si sus módulos son iguales , y sus argumentos se diferencian en un número entero de vueltas, es decir, , con .

La forma polar de un número complejo es especialmente cómoda a la hora de multiplicar, ya que basta con multiplicar los módulos y sumar los argumentos, es decir, si , y , entonces

Del mismo modo se puede calcular el cociente de un complejo por otro no nulo sin más que dividir los módulos y restar los argumentos:

,

siempre que .

Las fórmulas anteriores pueden generalizarse para el producto de varios complejos, así, si , para , entonces

Finalmente, en el caso en que todos los factores sean iguales se obtiene la fórmula de Moivre:

Esta fórmula es también válida para exponentes enteros negativos, siempre que .

En particular tenemos otra expresión para el inverso de un número no nulo, .

(Aquí puedes ver una aplicación de la fórmula de Moivre)

Cambio de forma binómica a polar y viceversa:

CAMBIO DE BINÓMICA A POLAR CAMBIO DE POLAR A BINÓMICA

 FORMA EXPONENCIAL

Una variante de la forma polar se obtiene al tener en cuenta la conocida como fórmula de Euler:

Para .

Esto nos permite escribir un número complejo en la forma siguiente, denominada forma exponencial:

Esta nueva forma es especialmente cómoda para expresar productos y cocientes ya que sólo hay que tener en cuenta las propiedades de la función exponencial (para multiplicar se suman exponentes y para

...

Descargar como (para miembros actualizados) txt (12 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com