Analisis Multivariado
Enviado por patoramirez • 8 de Abril de 2012 • 567 Palabras (3 Páginas) • 643 Visitas
MODELO MATEMATICO DE ANALISIS FACTORIAL
El modelo matemático del Analisis Factorial supone que cada una de las p variables observadas es función de un número m factores comunes (m < p) más un factor específico o único. Tanto los factores comunes como los específicos no son observables y su determinación e interpretación es el resultado del AF.
Analíticamente, supondremos un total de p variables observables tipificadas y la existencia de m factores comunes. El modelo se define de la siguiente forma:
X1 = l11 F1 + l12 F2 + l1m Fm + e1
X2 = l21 F1 + l22 F2 + l2m Fm + e2
...
Xp = lp1 F1 + lp2 F2 + lpm Fm + ep
que podemos expresar de forma matricial como: X = Lf + e
donde:
• X es el vector de las variables originales.
• L es la matriz factorial. Recoge las cargas factoriales ó (saturaciones).
• lih es la correlación entre la variable j y el factor h.
• f es el vector de factores comunes.
• e es el vector de factores únicos.
Como tanto los factores comunes como los específicos son variables hipotéticas, supondremos, para simplificar el problema, que:
1. Los factores comunes son variables con media cero y varianza 1. Además se suponen incorrelacionados entre sí.
2. Los factores únicos son variables con media cero. Sus varianzas pueden ser distintas. Se supone que están incorrelacionados entre sí. De lo contrario la información contenida en ellos estaría en los factores comunes.
3. Los factores comunes y los factores únicos están incorrelacionados entre si Esta hipótesis nos permite realizar inferencias que permitan distinguir entre los factores comunes y los específicos.
4. Basándonos en el modelo y en las hipótesis formuladas, podemos demostrar que la varianza (información contenida en una variable) de cada variable se puede descomponer en:
4
• aquella parte de la variabilidad que viene explicada por una serie de factores comunes con el resto de variables que llamaremos comunalidad de la variable
• y la parte de la variabilidad que es propia a cada variable y que, por tanto, es no común con el resto de variables. A esta parte se le llama factor único o especificidad de la variable.
Var(xj ) = 1 = l 2j1 Var(F1 ) + l 2j2 Var(F2 ) + ... + l 2jm Var(Fm ) + Var(ej ) = l 2j1 +
l 2j2 + l 2jm + Var(ej )
donde:
• l 2jh representa la proporción de varianza total de la variable Xj explicada por el factor h.
• h 2j = l 2j1 + l 2j2 + ... + l 2jm es la comunalidad de la variable Xj y representa la proporción de varianza que los distintos factores en su conjunto explican de la variable Xj. Es, por tanto, la parcela de esa variable que entra en contacto con el resto de variables. Varía entre 0 (los
...