ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Analisis Numerico


Enviado por   •  27 de Febrero de 2013  •  1.250 Palabras (5 Páginas)  •  661 Visitas

Página 1 de 5

Análisis numérico

El análisis numérico o cálculo numérico es la rama de las matemáticas que se encarga de diseñar algoritmos para, a través de números y reglas matemáticas simples, simular procesos matemáticos más complejos aplicados a procesos del mundo real.

El análisis numérico cobra especial importancia con la llegada de los ordenadores. Los ordenadores son útiles para cálculos matemáticos extremadamente complejos, pero en última instancia operan con números binarios y operaciones matemáticas simples.

Desde este punto de vista, el análisis numérico proporcionará todo el andamiaje necesario para llevar a cabo todos aquellos procedimientos matemáticos susceptibles de expresarse algorítmicamente, basándose en algoritmos que permitan su simulación o cálculo en procesos más sencillos empleando números.

Definido el error, junto con el error admisible, pasamos al concepto de estabilidad de los algoritmos. Muchas de las operaciones matemáticas pueden llevarse adelante a través de la generación de una serie de números que a su vez alimentan de nuevo el algoritmo (feedback). Esto proporciona un poder de cálculo y refinamiento importantísimo a la máquina que a medida que va completando un ciclo va llegando a la solución. El problema ocurre en determinar hasta cuándo deberá continuar con el ciclo, o si nos estamos alejando de la solución del problema.

Finalmente, otro concepto paralelo al análisis numérico es el de la representación, tanto de los números como de otros conceptos matemáticos como los vectores, polinomios, etc. Por ejemplo, para la representación en ordenadores de números reales, se emplea el concepto de coma flotante que dista mucho del empleado por la matemática convencional.

En general, estos métodos se aplican cuando se necesita un valor numérico como solución a un problema matemático, y los procedimientos "exactos" o "analíticos" (manipulaciones algebraicas, teoría de ecuaciones diferenciales, métodos de integración, etc.) son incapaces de dar una respuesta. Debido a ello, son procedimientos de uso frecuente por físicos e ingenieros, y cuyo desarrollo se ha visto favorecido por la necesidad de éstos de obtener soluciones, aunque la precisión no sea completa. Debe recordarse que la física experimental, por ejemplo, nunca arroja valores exactos sino intervalos que engloban la gran mayoría de resultados experimentales obtenidos, ya que no es habitual que dos medidas del mismo fenómeno arrojen valores exactamente iguales.

Problemas

Los problemas de esta disciplina se pueden dividir en dos grupos fundamentales:

Problemas de dimensión finita: aquellos cuya respuesta son un conjunto finito de números, como las ecuaciones algebraicas, los determinantes, los problemas de valores propios, etc.

Problemas de dimensión infinita: problemas en cuya solución o planteamiento intervienen elementos descritos por una cantidad infinita de números, como integración y derivación numéricas, cálculo de ecuaciones diferenciales, interpolación, etc.

Clasificación atendiendo a su naturaleza o motivación

Asimismo, existe una subclasificación de estos dos grandes apartados en tres categorías de problemas, atendiendo a su naturaleza o motivación para el empleo del cálculo numérico:

1) Problemas de tal complejidad que no poseen solución analítica.

2) Problemas en los cuales existe una solución analítica, pero ésta, por complejidad u otros motivos, no puede explotarse de forma sencilla en la práctica.

3) Problemas para los cuales existen métodos sencillos pero que, para elementos que se emplean en la práctica, requieren una cantidad de cálculos excesiva; mayor que la necesaria para un método numérico.

Áreas de estudio

El análisis numérico se divide en diferentes disciplinas de acuerdo con el problema que resolver.

Cálculo de los valores de una función

Uno de los problemas más sencillos es la evaluación de una función en un punto dado. Para polinomios, uno de los métodos más utilizados es el algoritmo de Horner, ya que reduce el número de operaciones a realizar. En general, es importante estimar y controlar los errores de redondeo que se producen por el uso de la aritmética de punto flotante.

La extrapolación es muy similar a la interpolación, excepto que ahora queremos encontrar el valor de la función desconocida en un punto que no está comprendido entre los puntos dados.

La regresión es también similar, pero tiene en cuenta que

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com