Calculo Diferencial Incrementos De Erazon De Cambio
Enviado por fernando1020 • 20 de Noviembre de 2012 • 634 Palabras (3 Páginas) • 937 Visitas
.1.1. Conceptos de incremento y de razón de cambio. La derivada de una función.
Cuando surgen cuestiones concernientes a la razón entre dos cantidades variables, entramos en los dominios del Cálculo Diferencial. Son por tanto objeto de estudio del cálculo diferencial temas como la velocidad (razón entre la distancia recorrida y el tiempo empleado en recorrerla) de una partícula en un momento determinado, la pendiente (razón entre la diferencia de las ordenadas y las abscisas de dos puntos en el plano cartesiano) de la recta tangente a una gráfica en un punto dado de ésta, etc.
INCREMENTOS:
Cuando una cantidad variable pasa de un valor inicial a otro valor, se dice que ha tenido un incremento. Para calcular este incremento basta con hallar la diferencia entre el valor final y el inicial. Para denotar esta diferencia se utiliza el símbolo ∆x, que se lee "delta x". El incremento puede ser positivo o negativo, dependiendo de si la variable aumenta o disminuye al pasar de un valor a otro. Por ejemplo, si el valor inicial de una variable x, x1, es igual a 3, y el valor final x2 es igual a 7, el incremento ∆x = x2 - x1 = 7 - 3 = 4: la variable se ha incrementado positivamente en 4 unidades. En cambio, si el valor inicial es 7 y el valor final 3, ∆x = x2 - x1 = 3 - 7 = -4: la variable ha tenido un incremento negativo (decremento) de 4 unidades.
RAZON DE CAMBIO
Comenzando por la Razón Instantánea de Cambio de una función cuya variable independiente es el tiempo t. suponiendo que Q es una cantidad que varía con respecto del tiempo t, escribiendo Q=f(t), siendo el valor de Q en el instante t. Por ejemplo
El tamaño de una población (peces, ratas, personas, bacterias,…)
La cantidad de dinero en una cuenta en un banco
El volumen de un globo mientras se infla
La distancia t recorrida en un viaje después del comienzo de un viaje
El cambio en Q desde el tiempo t hasta el tiempo t+∆t, es el incremento
La Razón de Cambio Promedio de Q (por la unidad de tiempo) es, por definición, la razón de cambio ∆Q en Q con respecto del cambio ∆t en t, por lo que es el cociente
Definimos la razón de cambio instantánea de Q (por unidad de tiempo) como el límite de esta razón promedio cuando ∆t→0. Es decir, la razón de cambio instantánea de Q es
Lo cual simplemente es la derivada f´(t). Así vemos que la razón de cambio instantánea de Q=f(t) es la derivada
La interpretación intuitiva de la razón de cambio instantánea, pensamos que el punto P(t,f(t)) se mueve a lo largo de la gráfica de la función Q=f(t). Cuando Q cambia con el tiempo t, el punto P se mueve a lo
...