ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Calculo Diferencial


Enviado por   •  25 de Marzo de 2014  •  1.081 Palabras (5 Páginas)  •  390 Visitas

Página 1 de 5

CÁLCULO DIFERENCIAL

El cálculo diferencial es una parte del análisis matemático que consiste en el estudio de cómo cambian las funciones cuando sus variables cambian. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función..

El Cálculo Diferencial es una herramienta matemática que surgió en el siglo XVII para resolver algunos problemas de geometría y de física. El problema de hallar una recta tangente a la gráfica de una función en un punto dado y la necesidad de explicar racionalmente los fenómenos de la astronomía o la relación entre distancia, tiempo, velocidad y aceleración, estimularon la invención y el desarrollo de los métodos del Cálculo.

Sobresalieron entre sus iniciadores John Wallis, profesor de la Universidad de Oxford e Isaac Barrow, profesor de Newton en la Universidad de Cambridge, Inglaterra. Pero un método general de diferenciación e integración fue descubierto solo hacia 1665 por el Inglés Isaac Newton y posteriormente por Gottfried Wilhelm Von Leibniz, nacido en Leipziy, Alemania, por lo que a ellos se les atribuye la invención del Cálculo.

En la actualidad el Cálculo se aplica al estudio de problemas de diversas áreas de la actividad humana y de la naturaleza: la economía, la industria, la física, la química, la biología, para determinar los valores máximos y mínimos de funciones, optimizar la producción y las ganancias o minimizar costos de operación y riesgos.

El estudio del cambio de una función es de especial interés para el cálculo diferencial, en concreto el caso en el que el cambio de las variables es infinitesimal, esto es, cuando dicho cambio tiende a cero (se hace tan pequeño como se desee). Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite

DERIVADA

La derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado.

Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto.

La derivada es un concepto que tiene variadas aplicaciones. Se aplica en aquellos casos donde es necesario medir la rapidez con que se produce el cambio de una magnitud o situación. Es una herramienta de cálculo fundamental en los estudios de Física, Química y Biología, o en ciencias sociales como la Economía y la Sociología

Por ejemplo, cuando se refiere a la gráfica de dos dimensiones de , se considera la derivada como la pendiente de la recta tangente del gráfico en el punto . Se puede aproximar la pendiente de esta tangente como el límite cuando la distancia entre los dos puntos que determinan una recta secante tiende a cero, es decir, se transforma la recta secante en una recta tangente. Con esta interpretación, pueden determinarse muchas propiedades geométricas de los gráficos de funciones, tales como concavidad o convexidad.

DERIVADA DE UNA FUNCIÓN

Considerando la función f definida en el intervalo abierto I y un punto a fijo en I, se tiene que la derivada de la función f en el punto se define como sigue:

,

si este límite existe, de lo contrario, , la derivada, no está definida. Esta última expresión coincide con la velocidad instantánea del movimiento continuo uniforme acelerado

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com