ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Campo Magnetico

517644210 de Mayo de 2014

6.477 Palabras (26 Páginas)286 Visitas

Página 1 de 26

República Bolivariana de Venezuela

Ministerio del Poder Popular Para la Educación

U.E”Santa Marta”

Cabimas, Edo- Zulia

Campo Magnético

Realizado por:

*YdaRincón

Abril-2014

Introducción

El magnetismo es uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que enlaza ambas fuerzas, es el tema de este curso, se denomina teoría electromagnétic. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia. Si bien algunos efectos magnéticos han sido conocidos desde la antigüedad, como por ejemplo el poder de atracción que sobre el hierro ejerce la magnetita, no fue sino hasta el siglo XIX cuando la relación entre la electricidad y el magnetismo quedó patente, pasando ambos campos de ser diferenciados a formar el cuerpo de lo que se conoce como electromagnetismo.

Antes de 1820, el único magnetismo conocido era el del hierro. Esto cambió con un profesor de ciencias poco conocido de la Universidad de Copenhague, Dinamarca, Hans Christian Oersted.

En 1820 Oersted preparó en su casa una demostración científica a sus amigos y estudiantes. Planeó demostrar el calentamiento de un hilo por un corriente eléctrica y también llevar a cabo demostraciones sobre el magnetismo, para lo cual dispuso de una aguja de compás montada sobre una peana de madera.Mientras llevaba a cabo su demostración eléctrica, Oersted notó para su sorpresa que cada vez que se conectaba la corriente eléctrica, se movía la aguja del compás. Se calló y finalizó las demostraciones, pero en los meses siguientes trabajó duro intentando explicarse el nuevo fenómeno. ¡Pero no pudo! La aguja no era ni atraída ni repelida por ella. En vez de eso tendía a quedarse en ángulo recto. Hoy sabemos que esto es una prueba fehaciente de la relación intrínseca entre el campo magnético y el campo eléctrico plasmada en las ecuaciones de Maxwell.

Como ejemplo para ver la naturaleza un poco distinta del campo magnético basta considerar el intento de separar el polo de un imán. Aunque rompamos un imán por la mitad este ``reproduce'' sus dos polos. Si ahora partimos estos cachos otra vez en dos, nuevamente tendremos cada cachito con dos polos norte y sur diferenciados. En magnetismo no existen los ``monopolos''

ESQUEMA

INTRODUCCIÓN

1) Teoría Eléctrica de Magnetismo.

2) Campo Magnético.

3) Unidad del Campo Magnético.

4) Línea del Campo Magnético.

5) Fuerza Magnética por un campo Magnético sobre una carga en movimiento.

6) Fuerza Magnética sobre un conductor rectilíneo por donde circula corriente eléctrica.

7) El Galvanómetro.

8) El Voltímetro y el Amperímetro.

9) El Tubo de Rayos Catódicos.

10) El Ciclotrón.

CONCLUSIÓN

BIBLIOGRAFÍA

1) Teoría Eléctrica de Magnetismo.

A finales del siglo XVIII y principios del XIX se investigaron simultáneamente las teorías de la electricidad y el magnetismo. En 1819, el físico danés Hans Christian Oersted llevó a cabo un importante descubrimiento al observar que una aguja magnética podía ser desviada por una corriente eléctrica. Este descubrimiento, que mostraba una conexión entre la electricidad y el magnetismo, fue desarrollado por el científico francés André Marie Ampère, que estudió las fuerzas entre cables por los que circulan corrientes eléctricas, y por el físico francés Dominique François Arago, que magnetizó un pedazo de hierro colocándolo cerca de un cable recorrido por una corriente.

En 1831, el científico británico Michael Faraday descubrió que el movimiento de un imán en las proximidades de un cable induce en éste una corriente eléctrica; este efecto era inverso al hallado por Oersted. Así, Oersted demostró que una corriente eléctrica crea un campo magnético, mientras que Faraday demostró que puede emplearse un campo magnético para crear una corriente eléctrica.

La unificación plena de las teorías de la electricidad y el magnetismo se debió al físico británico James Clerk Maxwell, que predijo la existencia de ondas electromagnéticas e identificó la luz como un fenómeno electromagnético.

2) Campo Magnético.

Se puede definir el campo magnético como la región del espacio donde se manifiestan acciones sobre las agujas magnéticas. Una carga en movimiento crea en el espacio que lo rodea, un campo magnético que actuara sobre otra carga también móvil, y ejercerá sobre esta ultima una fuerza magnética.

3) Unidad del Campo Magnético.

La unidad de inducción magnética en el Sistema Internacional o MKS se denomina Tesla .

En el sistema cegesimal o CGS, la unidad de inducción es el Gauss.

En el sistema cegesimal o CGS, la unidad de inducción es el Gauss.

Un Tesla es la inducción de un campo magnético en el que una carga de un coulomb que se desplaza perpendicularmente a las líneas de fuerzas con una velocidad de 1 m/seg se ve sometida a una fuerza de un newton.

Existe un campo magnético cuando al penetrar en una región del espacio, una carga móvil experimenta una fuerza que depende de la velocidad de la carga.

4) Línea del Campo Magnético.

Las líneas de fuerzas de un campo magnético son líneas continuas que no se cortan entre sí. Para representar y describir un campo magnético se utilizan línea de campo magnético o líneas de inducción. Al igual que los campos eléctricos, los campos magnéticos se pueden materializar mediante líneas de fuerzas, que pueden presentar distintas formas, según sea el agente creador, del campo. Distintas formas presentan las líneas de fuerza del campo magnético creado por una corriente, según que el conductor sea rectilíneo, circular o en forma de bobina.

Cuando se trata del campo magnético creado por un imán las líneas de fuerzas salen de una zona del mismo denominado polo norte y vuelven a otra zona que recibe el nombre de polo sur y es en las proximidades de estos polos donde más apretada se encuentran las líneas de fuerzas y, como consecuencias, donde con mayor intensidad se manifiestan los fenómenos magnéticos.

5) Fuerza Magnética por un campo Magnético sobre una carga en movimiento.

La fuente fundamental de un campo magnético es una carga eléctrica en movimiento. Dado que una corriente eléctrica es un conjunto de cargas eléctricas en movimiento se puede deducir que el campo magnético de una corriente eléctrica es el resultado de la superposición de los campos magnéticos producidos por las cargas en movimiento que constituyen la corriente. El cálculo del campo magnético creado por una corriente de forma arbitraria es un tanto complejo de ahí que se considerará algunos casos sencillos. Las experiencias de Oersted y los ensayos de Biot, Savart y Ampère condujeron a una relación que puede utilizarse para calcular el campo magnético en cualquier punto del espacio entorno a un circuito que tenga corriente.

6) Fuerza Magnética sobre un conductor rectilíneo por donde circula corriente eléctrica.

Una corriente eléctrica consiste en un movimiento definido de cargas eléctricas en un conductor. Un campo magnético ejerce una fuerza magnética sobre una carga aislada en movimiento. Por consiguiente, es de esperarse que un campo magnético ejerza una fuerza magnética sobre un conductor rectilíneo por el cual circula una corriente eléctrica. La fuerza ejercida por un campo magnético sobre un conductor rectilíneo situado perpendicularmente a las líneas de fuerza es igual al producto que resulta de multiplicar la inducción magnética por la longitud del conductor y por la intensidad de la corriente.

7) El Galvanómetro.

Un galvanómetro es un instrumento que se usa para detectar y medir la corriente eléctrica. Se trata de un transductor analógico electromecánico que produce una deformación de rotación en una aguja o puntero en respuesta a la corriente eléctrica que fluye a través de su bobina. Este término se ha ampliado para incluir los usos del mismo dispositivo en equipos de grabación, posicionamiento y servomecanismos. Fig #1. Galvanómetro. El galvanómetro consta de una aguja indicadora, unida mediante un resorte espiral, al eje de rotación de una bobina rectangular plana, que está suspendida entre los polos opuestos de un imán permanente. En el interior dela bobina se coloca un núcleo

...

Descargar como (para miembros actualizados) txt (36 Kb)
Leer 25 páginas más »
Disponible sólo en Clubensayos.com