Campo Magnetico
Enviado por 5176442 • 10 de Mayo de 2014 • 6.477 Palabras (26 Páginas) • 260 Visitas
República Bolivariana de Venezuela
Ministerio del Poder Popular Para la Educación
U.E”Santa Marta”
Cabimas, Edo- Zulia
Campo Magnético
Realizado por:
*YdaRincón
Abril-2014
Introducción
El magnetismo es uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que enlaza ambas fuerzas, es el tema de este curso, se denomina teoría electromagnétic. La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia. Si bien algunos efectos magnéticos han sido conocidos desde la antigüedad, como por ejemplo el poder de atracción que sobre el hierro ejerce la magnetita, no fue sino hasta el siglo XIX cuando la relación entre la electricidad y el magnetismo quedó patente, pasando ambos campos de ser diferenciados a formar el cuerpo de lo que se conoce como electromagnetismo.
Antes de 1820, el único magnetismo conocido era el del hierro. Esto cambió con un profesor de ciencias poco conocido de la Universidad de Copenhague, Dinamarca, Hans Christian Oersted.
En 1820 Oersted preparó en su casa una demostración científica a sus amigos y estudiantes. Planeó demostrar el calentamiento de un hilo por un corriente eléctrica y también llevar a cabo demostraciones sobre el magnetismo, para lo cual dispuso de una aguja de compás montada sobre una peana de madera.Mientras llevaba a cabo su demostración eléctrica, Oersted notó para su sorpresa que cada vez que se conectaba la corriente eléctrica, se movía la aguja del compás. Se calló y finalizó las demostraciones, pero en los meses siguientes trabajó duro intentando explicarse el nuevo fenómeno. ¡Pero no pudo! La aguja no era ni atraída ni repelida por ella. En vez de eso tendía a quedarse en ángulo recto. Hoy sabemos que esto es una prueba fehaciente de la relación intrínseca entre el campo magnético y el campo eléctrico plasmada en las ecuaciones de Maxwell.
Como ejemplo para ver la naturaleza un poco distinta del campo magnético basta considerar el intento de separar el polo de un imán. Aunque rompamos un imán por la mitad este ``reproduce'' sus dos polos. Si ahora partimos estos cachos otra vez en dos, nuevamente tendremos cada cachito con dos polos norte y sur diferenciados. En magnetismo no existen los ``monopolos''
ESQUEMA
INTRODUCCIÓN
1) Teoría Eléctrica de Magnetismo.
2) Campo Magnético.
3) Unidad del Campo Magnético.
4) Línea del Campo Magnético.
5) Fuerza Magnética por un campo Magnético sobre una carga en movimiento.
6) Fuerza Magnética sobre un conductor rectilíneo por donde circula corriente eléctrica.
7) El Galvanómetro.
8) El Voltímetro y el Amperímetro.
9) El Tubo de Rayos Catódicos.
10) El Ciclotrón.
CONCLUSIÓN
BIBLIOGRAFÍA
1) Teoría Eléctrica de Magnetismo.
A finales del siglo XVIII y principios del XIX se investigaron simultáneamente las teorías de la electricidad y el magnetismo. En 1819, el físico danés Hans Christian Oersted llevó a cabo un importante descubrimiento al observar que una aguja magnética podía ser desviada por una corriente eléctrica. Este descubrimiento, que mostraba una conexión entre la electricidad y el magnetismo, fue desarrollado por el científico francés André Marie Ampère, que estudió las fuerzas entre cables por los que circulan corrientes eléctricas, y por el físico francés Dominique François Arago, que magnetizó un pedazo de hierro colocándolo cerca de un cable recorrido por una corriente.
En 1831, el científico británico Michael Faraday descubrió que el movimiento de un imán en las proximidades de un cable induce en éste una corriente eléctrica; este efecto era inverso al hallado por Oersted. Así, Oersted demostró que una corriente eléctrica crea un campo magnético, mientras que Faraday demostró que puede emplearse un campo magnético para crear una corriente eléctrica.
La unificación plena de las teorías de la electricidad y el magnetismo se debió al físico británico James Clerk Maxwell, que predijo la existencia de ondas electromagnéticas e identificó la luz como un fenómeno electromagnético.
2) Campo Magnético.
Se puede definir el campo magnético como la región del espacio donde se manifiestan acciones sobre las agujas magnéticas. Una carga en movimiento crea en el espacio que lo rodea, un campo magnético que actuara sobre otra carga también móvil, y ejercerá sobre esta ultima una fuerza magnética.
3) Unidad del Campo Magnético.
La unidad de inducción magnética en el Sistema Internacional o MKS se denomina Tesla .
En el sistema cegesimal o CGS, la unidad de inducción es el Gauss.
En el sistema cegesimal o CGS, la unidad de inducción es el Gauss.
Un Tesla es la inducción de un campo magnético en el que una carga de un coulomb que se desplaza perpendicularmente a las líneas de fuerzas con una velocidad de 1 m/seg se ve sometida a una fuerza de un newton.
Existe un campo magnético cuando al penetrar en una región del espacio, una carga móvil experimenta una fuerza que depende de la velocidad de la carga.
4) Línea del Campo Magnético.
Las líneas de fuerzas de un campo magnético son líneas continuas que no se cortan entre sí. Para representar y describir un campo magnético se utilizan línea de campo magnético o líneas de inducción. Al igual que los campos eléctricos, los campos magnéticos se pueden materializar mediante líneas de fuerzas,
...