ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

DEFINICION DE HIPERBOLA


Enviado por   •  29 de Julio de 2021  •  Tarea  •  879 Palabras (4 Páginas)  •  67 Visitas

Página 1 de 4

[pic 1][pic 2]

DEFINICION DE HIPERBOLA

La hipérbola es el lugar geométrico de los puntos de un plano cuya diferencia de distancias (d1 y d2) a dos puntos fijos llamados focos (F1 y F2) es constante.

                     H={P(x,y)||d(P;F1)–d(P;F2)|=2a=cte}

El valor de esa constante es la distancia entre los vértices V1 y V2 de la hipérbola (2a).

[pic 3]

La hipérbola también se puede definir como una cónica, siendo la intersección del cono con un plano que no pase por su vértice y que forme un ángulo con el eje del cono menor que el ángulo que forma con el eje generatriz g del cono.

[pic 4]

ECUACIÓN CANÓNICA DE LA HIPÉRBOLA

Con una deducción similar a la de la elipse, se obtiene:[pic 5]

Es la ecuación canónica de la hipérbola con centro en (0,0) y eje focal y=0 (eje x)

Busquemos las intersecciones con los ejes:

[pic 6]

Entonces no corta al eje y.

Los puntos V1,2 se denominan vértices de la hipérbola.

Elementos de la hipérbola

Los elementos de la hipérbola son:

[pic 7]

  • Focos: son los dos puntos fijos (F1 y F2).
  • Radio vector: es la distancia R de un punto de la hipérbola (P) a cualquiera de los focos.
  • Eje focal: es el eje de simetría E que une a los dos focos. También se llama eje transverso.
  • Eje no transverso: es la mediatriz T del eje focal.
  • Centro: es el punto medio O de los dos focos. También se puede definir como la intersección del eje focal y el transverso.
  • Vértices: son los dos puntos de intersección del eje focal con la hipérbola (V1 y V2).

[pic 8]

  • Distancia focal: es la distancia 2c entre focos. También se denota como F1F2.
  • Eje real: es es la distancia 2a entre vértices.
  • Eje imaginario: es la distancia 2b de los puntos B1 y B2. Los puntos B1 y B2 se generan como vemos en las relaciones entre semiejes.

Así pues, existe una relación entre los semiejes y la distancia focal:

[pic 9]

  • Asíntotas: son las líneas rectas (A1 y A2) que se aproximan a la hipérbola en el infinito.
  • Puntos interiores y exteriores: la hipérbola divide el plano en tres regiones. Dos regiones que contienen un foco cada una y otra región sin ningún foco. Los puntos contenidos en las regiones con un foco se llaman interiores (I) y los otros exteriores (Ex).
  • Tangentes de la hipérbola: sobre cada punto Pi de ambas ramas de la misma. Cada tangente es la bisectriz de los dos radios vectores del punto Pi.

[pic 10]

  • Circunferencia principal (CP): su radio r=a y su centro en O. Es el lugar geométrico de las proyecciones de un foco sobre las tangentes.

[pic 11]

  • Directrices de la hipérbola: son dos rectas paralelas al eje transverso (D1 y D2). Su distancia a cada una es a/e (e es la excentricidad de la hipérbola). Pasan por las intersecciones de la circunferencia principal con las asíntotas (A1 y A2).

HIPÉRBOLA VERTICAL

La hipérbola vertical tiene el eje focal vertical, paralelo al eje de ordenadas Y.

...

Descargar como (para miembros actualizados) txt (6 Kb) pdf (479 Kb) docx (350 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com