ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Definición de matriz, notacion y orden


Enviado por   •  14 de Septiembre de 2012  •  Informe  •  543 Palabras (3 Páginas)  •  770 Visitas

Página 1 de 3

Definición de matriz, notacion y orden

La matriz anterior se denota también por (ai j ), i =1, ..., m, j =1, ..., n, o simplemente por (ai j ).

Los términos horizontales son las filas de la matriz y los verticales son sus columnas. Una matriz con m filas y n columnas se denomina matrizm por n, o matriz m ð n.

Las matrices se denotarán usualmente por letras mayúsculas, A, B, ..., y los elementos de las mismas por minúsculas, a, b, ...

Ejemplo:

donde sus filas son (1, -3, 4) y (0, 5, -2) y sus

CLASES DE MATRICES

Según el aspecto de las matrices, éstas pueden clasificarse en:

Matrices cuadradas

Una matriz cuadrada es la que tiene el mismo número de filas que de columnas. Se dice que una matriz cuadrada n ð n es de orden n y se denomina matriz n-cuadrada.

Ejemplo: Sean las matrices

Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

Matriz identidad

Sea A = (ai j ) una matriz n-cuadrada. La diagonal (o diagonal principal) de A consiste en los elementos a11, a22, ..., ann. La traza de A, escrito trA, es la suma de los elementos diagonales.

La matriz n-cuadrada con unos en la diagonal principal y ceros en cualquier otra posición, denotada por I, se conoce como matriz identidad (o unidad). Para cualquier matriz A,

A• I = I •A = A.

Matrices triangulares

Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriz triangular, si todas las entradas bajo la diagonal principal son iguales a cero. Así pues, las matrices

son matrices triangulares superiores de órdenes 2, 3 y 4.

Matrices diagonales

Una matriz cuadrada es diagonal, si todas sus entradas no diagonales son cero o nulas. Se denota por D = diag (d11, d22, ..., dnn ). Por ejemplo,

son matrices diagonales que pueden representarse, respectivamente, por

diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1).

Traspuesta de una matriz

La traspuesta de una matriz A consiste en intercambiar las filas por las columnas y se denota por AT.

Así, la traspuesta de

En otras palabras, si A = (ai j ) es una matriz m ð n, entonces AT =

es la matriz n ð m. La trasposición de una matriz cumple las siguientes propiedades:

1. (A + B)T = AT + BT.

2. (AT)T = A.

3. (kA)T = kAT (si k es un escalar).

4. (AB)T = BTAT.

Matrices simétricas

Se dice que una matriz real es simétrica, si AT = A; y que es antisimétrica,

si AT = -A.

Ejemplo:

Consideremos las siguientes matrices:

Podemos observar que los elementos simétricos de A son iguales, o que AT = A. Siendo así, A es simétrica.

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com