Definición de matriz, notacion y orden
Enviado por arturo1277 • 14 de Septiembre de 2012 • Informe • 543 Palabras (3 Páginas) • 785 Visitas
Definición de matriz, notacion y orden
La matriz anterior se denota también por (ai j ), i =1, ..., m, j =1, ..., n, o simplemente por (ai j ).
Los términos horizontales son las filas de la matriz y los verticales son sus columnas. Una matriz con m filas y n columnas se denomina matrizm por n, o matriz m ð n.
Las matrices se denotarán usualmente por letras mayúsculas, A, B, ..., y los elementos de las mismas por minúsculas, a, b, ...
Ejemplo:
donde sus filas son (1, -3, 4) y (0, 5, -2) y sus
CLASES DE MATRICES
Según el aspecto de las matrices, éstas pueden clasificarse en:
Matrices cuadradas
Una matriz cuadrada es la que tiene el mismo número de filas que de columnas. Se dice que una matriz cuadrada n ð n es de orden n y se denomina matriz n-cuadrada.
Ejemplo: Sean las matrices
Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.
Matriz identidad
Sea A = (ai j ) una matriz n-cuadrada. La diagonal (o diagonal principal) de A consiste en los elementos a11, a22, ..., ann. La traza de A, escrito trA, es la suma de los elementos diagonales.
La matriz n-cuadrada con unos en la diagonal principal y ceros en cualquier otra posición, denotada por I, se conoce como matriz identidad (o unidad). Para cualquier matriz A,
A• I = I •A = A.
Matrices triangulares
Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriz triangular, si todas las entradas bajo la diagonal principal son iguales a cero. Así pues, las matrices
son matrices triangulares superiores de órdenes 2, 3 y 4.
Matrices diagonales
Una matriz cuadrada es diagonal, si todas sus entradas no diagonales son cero o nulas. Se denota por D = diag (d11, d22, ..., dnn ). Por ejemplo,
son matrices diagonales que pueden representarse, respectivamente, por
diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1).
Traspuesta de una matriz
La traspuesta de una matriz A consiste en intercambiar las filas por las columnas y se denota por AT.
Así, la traspuesta de
En otras palabras, si A = (ai j ) es una matriz m ð n, entonces AT =
es la matriz n ð m. La trasposición de una matriz cumple las siguientes propiedades:
1. (A + B)T = AT + BT.
2. (AT)T = A.
3. (kA)T = kAT (si k es un escalar).
4. (AB)T = BTAT.
Matrices simétricas
Se dice que una matriz real es simétrica, si AT = A; y que es antisimétrica,
si AT = -A.
Ejemplo:
Consideremos las siguientes matrices:
Podemos observar que los elementos simétricos de A son iguales, o que AT = A. Siendo así, A es simétrica.
...