El concepto de los números reales
Enviado por maicol1010 • 12 de Febrero de 2014 • Informe • 284 Palabras (2 Páginas) • 321 Visitas
Los números reales.
Los números reales son muy importante que los ocupamos para todo, aunque no nos demos cuenta lo usamos para todo, para hacer cualquier cosa, ya que ellos constituyen la base del cálculo diferencial e integral. Los números reales están designados por la letra
El conjunto de los números reales está formado por una serie de subconjuntos de números que definiremos a continuación:
Los números naturales que surgen con la necesidad de contar
N = {1, 2, 3, 4,...}
Los números enteros que complementan a los naturales pues son contienen a los negativos y el cero
Z = {...-3, -2, -1, 0, 1, 2, 3...}
Los números racionales (fraccionarios o quebrados) que son todos aquellos números que pueden ser representados como el cociente de dos números enteros
Q = {-⅓, -⅖,...⅙ ⅜...}
Y los números irracionales, que son todos aquellos números que no pueden ser representados como el cociente de dos números enteros. Ejemplos de estos son el número e, √2 y el número π. Este conjunto se representa con1.
Puesto que los naturales están incluidos en los enteros y todos los enteros pueden ser representados como un número racional, se dice que los números reales son la unión de los números racionales y los irracionales.
R = QUI
Gráficamente los números reales son representados con la recta numérica, a cada punto de una recta se le puede asociar un número real. Además, se dice que se trata de un conjunto infinito, denso y no numerable, pues de un número real no puede decirse cuál es el número real anterior y posterior a él. También lo podemos representar los subconjuntos de los numeros reales lo podemos ver mediante este mapa conceptual:
...