ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Numeros Reales


Enviado por   •  29 de Enero de 2014  •  360 Palabras (2 Páginas)  •  271 Visitas

Página 1 de 2

Números reales

El conjunto formado por los números racionales y los irracionales se llama conjunto

de números reales y se designa por R.

Clasificación

Números racionales son los que se pueden poner como cociente de dos números

enteros. Su expresión decimal es exacta o periódica.

Números irracionales son los no racionales, es decir, los que no pueden obtenerse como

cociente de dos números enteros. Su expresión decimal es infinita no periódica.

Propiedades

Números racionales

 Forman un subconjunto denso de los números reales: todo número real tiene racionales arbitrariamente cerca.

 Poseen una expansión finita como fracción continua regular.

 Con la topología del orden, forman un anillo topológico, o de grupo parcialmente ordenado; presentan una topología inducida; también forman un espacio métrico con la métrica d(x,y) = |x − y|.

 Los racionales son un ejemplo de espacio que no es localmente compacto.

 Se caracterizan topológicamente por ser el único espacio metrizable numerable sin puntos aislados (también es totalmente discontinuo). Los números racionales no forman un espacio métrico completo.

Números irracionales

No existe una notación universal para indicarlos, como , que es generalmente aceptada. Las razones son que el conjunto de Números Irracionales no constituyen ninguna estructura algebraica, como sí lo son los Naturales ( ), los Enteros ( ), los Racionales ( ), los Reales ( ) y los Complejos ( ), por un lado, y que la es tan apropiada para designar al conjunto de Números Irracionales como al conjunto de Números Imaginarios Puros, lo cual puede crear confusión.

Fuera de ello, , es la denotación del conjunto por definición.

Valor absoluto

El valor absoluto o módulo de un número real es su valor numérico sin tener en cuenta su signo, sea este positivo (+) o negativo (-). Así, por ejemplo, 3 es el valor absoluto de 3 y de -3.

El valor absoluto está relacionado con las nociones de magnitud, distancia y norma en diferentes contextos matemáticos y físicos. El concepto de valor absoluto de un número real puede generalizarse a muchos otros objetos matemáticos, como son los cuaterniones, anillos ordenados, cuerpos o espacios vectoriales.

Representación de números irracionales en la recta

Si un número irracional viene dado por su expresión decimal, podemos representarlo,

de forma aproximada:

Ejemplo: 3,470470047.....

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com