Enlace Metalico
Enviado por ondi94 • 27 de Noviembre de 2012 • 1.476 Palabras (6 Páginas) • 962 Visitas
Enlace metálico
Enlace metálico ò Enlace químico que ocurre entre los átomos de metales entre sí, (unión entre núcleos atómicos y los electrones de valencia, que se agrupan alrededor de éstos como una nube). Es un enlace fuerte, primario, que se forma entre elementos de la misma especie, en este enlace todos los átomos envueltos pierden electrones de sus capas más externas, que se trasladan más o menos libremente entre ellos, formando una nube electrónica (también conocida como mar de electrones).
Es el tipo de enlace que se produce cuando se combinan entre sí los elementos metálicos; es decir, elementos de electronegatividades bajas y que se diferencien poco.
Teoría de bandas:
Esta teoría representa un modelo más elaborado para explicar la formación del enlace metálico; se basa en la teoría de los orbitales moleculares. Esta teoría mantiene que cuando dos átomos enlazan, los orbitales de la capa de valencia se combinan para formar dos orbitales nuevos que pertenecen a toda la molécula, uno que se denomina enlazante (de menor energía) y otro antienlazante (de mayor energía). Si se combinasen 3 átomos se formarían 3 orbitales moleculares, con una diferencia de energía entre ellos menor que en el caso anterior. En general, cuando se combinan N orbitales, de otros tantos átomos, se obtienen N orbitales moleculares de energía muy próxima entre sí, constituyendo lo que se llama una banda
En los metales existe un número muy grande de orbitales atómicos para formar enlaces des localizados que pertenezcan a toda la red metálica (como si fuese una gran molécula). Como el número de orbitales moleculares es muy grande forman una banda en la que los niveles de energía, como se ha dicho anteriormente, están muy próximos.
En los metales se forman dos bandas. Una en la que se encuentran los electrones de la capa de valencia que se denomina "banda de valencia" y otra que se llama "banda de conducción" que es la primera capa vacía.
En las sustancias metálicas, la banda de valencia está llena o parcialmente llena; pero en estas sustancias, la diferencia energética entre la banda de valencia y la de conducción es nula; es decir están solapadas. Por ello, tanto si la banda de valencia está total o parcialmente llena, los electrones pueden moverse a lo largo de los orbitales vacios y conducir la corriente eléctrica al aplicar una diferencia de potencial.
En el caso de los aislantes la banda de valencia está completa y la de conducción vacía; pero a diferencia de los metales, no sólo no solapan sino que además hay una importante diferencia de energía entre una y otra (hay una zona prohibida) por lo que no pueden producirse saltos electrónicos de una a otra. Es decir, los electrones no gozan de la movilidad que tienen en los metales y, por ello, estas sustancias no conducen la corriente eléctrica.
Un caso intermedio lo constituyen los semiconductores, en el caso de las sustancias de este tipo, la banda de valencia también está llena y hay una separación entre las dos bandas, pero la zona prohibida no es tan grande, energéticamente hablando, y algunos electrones pueden saltar a la banda de conducción. Estos electrones y los huecos dejados en la banda de valencia permiten que haya cierta conductividad eléctrica. La conductividad en los semiconductores aumenta con la temperatura, ya que se facilitan los saltos de los electrones a la banda de conducción. Son ejemplos de semiconductores: Ge, Si, Ga, As y InSb
Clasificación de los sólidos en base a su conductividad eléctrica: aislante, conductor, semiconductor.
Conductor eléctrico:
Cualquier material que ofrezca poca resistencia al flujo de electricidad. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. El fenómeno conocido como superconductividad se produce cuando al enfriar ciertas sustancias a una temperatura cercana al cero absoluto su conductividad se vuelve prácticamente
...