Eventos mutuamente excluyentes y eventos no excluyentes
Enviado por chavadaba • 13 de Octubre de 2014 • Trabajo • 652 Palabras (3 Páginas) • 395 Visitas
Eventos mutuamente excluyentes y eventos no excluyentes
Dos o más eventos son mutuamente excluyentes o disjuntos, si no pueden ocurrir simultáneamente. Es decir, la ocurrencia de un evento impide automáticamente la ocurrencia del otro evento (o eventos).
Ejemplo:
Al lanzar una moneda solo puede ocurrir que salga cara o sello pero no los dos a la vez, esto quiere decir que estos eventos son excluyentes.
Dos o más eventos son no excluyentes, o conjuntos, cuando es posible que ocurran ambos. Esto no indica que necesariamente deban ocurrir estos eventos en forma simultánea.
Ejemplo:
Si consideramos en un juego de domino sacar al menos un blanco y un seis, estos eventos son no excluyentes porque puede ocurrir que salga el seis blanco.
Reglas de la Adición
La Regla de la Adición expresa que: la probabilidad de ocurrencia de al menos dos sucesos A y B es igual a:
P(A o B) = P(A) U P(B) = P(A) + P(B) si A y B son mutuamente excluyente
P(A o B) = P(A) + P(B) – P(A y B) si A y B son no excluyentes
Siendo: P(A) = probabilidad de ocurrencia del evento A
P(B) = probabilidad de ocurrencia del evento B
P(A y B) = probabilidad de ocurrencia simultanea de los eventos A y B
Eventos Independientes
Dos o más eventos son independientes cuando la ocurrencia o no-ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro evento (o eventos). Un caso típico de eventos independiente es el muestreo con reposición, es decir, una vez tomada la muestra se regresa de nuevo a la población donde se obtuvo.
Ejemplo:
lanzar al aire dos veces una moneda son eventos independientes por que el resultado del primer evento no afecta sobre las probabilidades efectivas de que ocurra cara o sello, en el segundo lanzamiento.
Eventos dependientes
Dos o más eventos serán dependientes cuando la ocurrencia o no-ocurrencia de uno de ellos afecta la probabilidad de ocurrencia del otro (o otros). Cuando tenemos este caso, empleamos entonces, el concepto de probabilidad condicional para denominar la probabilidad del evento relacionado. La expresión P(AB) indica la probabilidad de ocurrencia del evento A sí el evento B ya ocurrió.
Se debe tener claro que AB no es una fracción.
P(AB) = P(A y B)/P(B) o P(BA) = P(A y B)/P(A)
Reglas de Multiplicación
Se relacionan con la determinación de la ocurrencia de conjunta de dos o más eventos. Es decir la intersección entre los conjuntos de los posibles valores de A y los valores de B, esto quiere decir que la probabilidad de que ocurran conjuntamente los eventos A y B es:
P(A y B) = P(A B) = P(A)P(B) si A y B son independientes
P(A y B) = P(A B) = P(A)P(BA) si A y B son dependientes
P(A y B) = P(A B) = P(B)P(AB) si A y B son dependientes
Distribución de probabilidad normal
Es
...