Filosofía De Las Matemáticas
Enviado por micaelapite • 18 de Marzo de 2014 • 12.749 Palabras (51 Páginas) • 420 Visitas
Filosofía de la matemática
La filosofía de las matemáticas es una rama de la filosofía. Según Michael Dummett puede considerarse que hay cuatro preguntas fundamentales sobre el contenido de la filosofía de las matemáticas:
1. ¿Cómo sabemos que nuestras teorías matemáticas son verdaderas?
2. ¿Sobre qué son las matemáticas? En otras palabras, si un enunciado matemático es verdadero, ¿qué lo hace verdadero? ¿En virtud de qué es verdadero?
3. ¿Las verdades matemáticas son verdaderas por necesidad? Y, si lo son, ¿cuál es la fuente de esta necesidad?
4. ¿Cómo es posible aplicar las verdades matemáticas a la realidad externa? Y ¿en qué consiste esta aplicación? (Dummett, 1998, p. 124). También se plantean otras cuestiones como: ¿Qué significado tiene referirse a un objeto matemático? ¿Cuál es la naturaleza de una proposición en matemáticas? ¿Qué relación hay entre lógica y matemática? ¿Cómo se explica la belleza de las matemáticas?
El origen de las matemáticas y el empirismo matemático
A las preguntas de cómo sabemos que las proposiciones matemáticas son verdaderas y qué es lo que hace a una proposición matemática sea verdadera podemos responder acudiendo al origen de las matemáticas. En esta sección comenzaremos haciendo un breve esbozo de cómo pudieron surgir los primeros conceptos y proposiciones matemáticos para luego explicar cómo este surgimiento podría hacer plausible cierta hipótesis sobre dónde hay que buscar los conceptos matemáticos y qué hace que las proposiciones matemáticas sean verdaderas.
Es indudable que las matemáticas tienen su origen en las actividades de contar y medir, aunque el cómo sea más difícil de establecer. La mejor hipótesis de la que disponemos se basa en los hallazgos arqueológicos en Mesopotamia (Maza, 2008).
Entre el milenio VIII y IV a.n.e. existieron fichas que tenían la función de describir cantidades de productos, animales o cualquier elemento de la actividad económica. La forma de hacerlo debe haber sido aditiva durante largo tiempo. Así, en caso de disponer de cinco animales, se representaría tal cantidad por cinco fichas, pongamos por caso, en forma de cilindro. Si, en cambio, se quería registrar cinco jarras de aceite, se emplearían cinco ovoides con una marca. De este modo, cada ficha representaría una unidad del producto cuya naturaleza viene representada por la forma de la ficha y la cantidad presenta una representación aditiva. Con ello tenemos la condición necesaria para la aparición de los números que es el establecimiento de una correspondencia uno-a-uno entre los elementos a contar (animales, jarras) y los elementos contables (fichas); pero todavía no tenemos números.
Pero desde muy pronto las fichas debieron ser transportadas en algún tipo de envoltura, sean bolsas de cuero o similares. En algún momento, la forma de transporte se simplificó envolviendo estas fichas en esferas huecas de barro. Estas burbujas de arcilla pueden en muchas ocasiones presentar signos externos. Esto permite formular una hipótesis sencilla y atractiva sobre la funcionalidad de fichas y burbujas.
Por ejemplo, un agricultor y un ganadero desean hacer un trueque de productos. Uno entregará varios animales a cambio de un número de cestos de grano. Cuando llegan al acuerdo difieren el pago al objeto de que algunos de sus trabajadores acuda a las tierras del otro para recoger el objeto del intercambio. Pero, de algún modo, ha de sellarse el acuerdo. La forma de hacerlo será moldear las fichas que representen las cantidades que cada uno entregará y dárselas al otro envueltas en una burbuja de arcilla. De este modo, los trabajadores de cada uno se presentan en las tierras del otro con la burbuja recibida. Allí mismo se rompe y se encontrarán las fichas que representan aquello que debe entregarse al poseedor de la burbuja.
Conviene prestar atención a las marcas realizadas en el exterior de la burbuja y que se han mencionado anteriormente, pues se supone que representan sobre la burbuja las fichas que permanecen dentro de la burbuja, a modo de recordatorio de lo que contiene. Éste sería el vínculo entre las fichas y los signos exteriores. Así, con el tiempo, estos signos van haciendo inútiles las fichas del interior de la burbuja. Sin las fichas, las burbujas se fueron transformando dando paso a las tablillas donde la representación numérica será plana a finales del IV milenio a.n.e.
Las tablillas así inventadas servían para registrar cantidades diversas del mismo producto o de productos diferentes. Al corresponder, por ejemplo, a entradas distintas por el proveedor, o cualquier otra circunstancia, resulta adecuado registrar también el total de la cantidad registrada. Eso se hacía habitualmente en el reverso de la tablilla. Por ejemplo, una tablilla que registra, en su anverso, cinco jarras de cerveza compradas a Fulano y cuatro compradas a Sótano; en el reverso están las nueve jarras agrupadas. Este es un caso especialmente simple de suma por cuanto lo único que se hace en el reverso es presentar las nueve jarras agrupadas. De este modo, la suma consiste exclusivamente en repetir cada uno de los signos utilizados para contar. Pero desde el punto de vista aritmético, las cantidades a sumar pueden rebasar la simple enumeración de sus elementos, con lo que nos encontramos en una situación más compleja. Y esta es una de las razones de la aparición de los sistemas de numeración, pues es en este tipo de caso cuando se aplica el sistema de numeración vigente para reunir en un solo resultado la acción aritmética emprendida. Esto último solía depender del producto, de la misma manera que por tradición contamos los huevos por docenas y no por decenas y para el tiempo utilizamos el sistema sexagesimal (una hora son sesenta minutos, cada uno de los cuales son sesenta segundos).
Las transacciones y contabilidades comerciales se realizaban pesando los productos objeto de comercio (lana, cereal, estaño, etc.) y tasando su valor en la plata correspondiente, que actuaba a modo de moneda no acuñada. Actuaba en la triple función bajo la cual se constituye la moneda: como unidad de cuenta; como medio de intercambio, dado que podía incluirse como parte de la transacción comercial; y también como medio de pago, tal como se deduce de numerosos documentos de venta y préstamos. Los problemas algebraicos que generaban estas transacciones hicieron que los mesopotámicos fueran capaces de resolver sistemas de ecuaciones lineales de hasta tres incógnitas o ecuaciones de segundo grado.
Las primeras unidades de medida parecen haber sido las referidas al peso, como es de suponer dado lo dicho antes. Sin embargo, durante el tercer milenio a.n.e. se fueron constituyendo unidades cada vez más estandarizadas tanto de longitud, como de
...