ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

LEY DE SENOS Y LEY DE COSENOS GEOMETRIA Y GEOGRAFIA


Enviado por   •  20 de Octubre de 2014  •  809 Palabras (4 Páginas)  •  841 Visitas

Página 1 de 4

Ley de los senos y Ley de los cosenos

Revisión del intento 1

Comenzado el martes, 14 de octubre de 2014, 00:34

Completado el lunes, 20 de octubre de 2014, 14:16

Tiempo empleado 6 días 13 horas

Puntos 4/4

Calificación 10 de un máximo de 10 (100%)

Question 1

Puntos: 1

1. Para mejorar la infraestructura turística en el lago de Pátzcuaro se planea la construcción de un funicular que una las islas Yunuen y Pacanda. Para calcular la distancia que unirá los dos puntos seleccionados para su construcción, un topógrafo toma las medidas que muestra la figura superior. La distancia entre estos puntos es igual a:

.

a. 2.95 km.

b. 3.74 km. ¡Muy bien! Como se conoce la medida de dos lados del triángulo que se forma y el ángulo entre estos lados, la ley de los cosenos es de utilidad para calcular la longitud del funicular. Al sustituir los datos que se tienen en la ley de los cosenos se obtiene que a2=(4.5)2+(5.7)2-2(4.5)(5.7)cos 41o y al despejar se tiene que la distancia que unirá los dos destinos es de 3.74 km.

c. 3.91 km.

d. 4.95 km.

Correcto

Puntos para este envío: 1/1.

Question 2

Puntos: 1

2. La órbita de un satélite de comunicación pasa sobre varias estaciones repetidoras. En cierto momento en que se encuentra entre dos de ellas que están a 100 km. de distancia una de la otra, simultáneamente se mide el ángulo de elevación de la estación A que es de 78° y el de la estación B que es de 62°. La distancia de la estación B al satélite en ese momento es igual a

.

a. 90.62 km.

b. 110.78 km

c. 137.36 km.

d. 152.17 km. ¡Muy bien! Con los datos de este problema se forma un triángulo en donde se conocen dos ángulos y un lado. Por ello, para encontrar cualquiera de los lados faltantes se utiliza la ley de los senos. Primeramente debemos encontrar el tercer ángulo para lo cual se utiliza el teorema que dice que la suma de los ángulos internos de un triángulo es igual a 180°. Entonces el tercer ángulo es 180° - (78° + 62°) = 40°. Usando la ley de los senos tenemos que x/sen78°=100/sen40°. Al despejar la variable se obtiene que la distancia entre el satélite y la estación B es de 152.17 km.

Correcto

Puntos para este envío: 1/1.

Question 3

Puntos: 1

3. Un barco guardacostas se encuentran en alta mar a 120 millas náuticas al sur de otro barco guardacostas cuando reciben una llamada de auxilio de una embarcación. El del sur localiza la posición de la embarcación a 38° noreste y el del norte a 32° sureste. La distancia entre la embarcación y el guardacostas del sur es

.

a. 108.29 millas ¡Muy bien! Como vemos en la figura, los ángulos que conocemos son los complementos

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com