ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ley De Seno Y Coseno


Enviado por   •  25 de Abril de 2013  •  1.218 Palabras (5 Páginas)  •  485 Visitas

Página 1 de 5

Ley de senos

La ley de los Senos es una relación de tres igualdades que siempre se cumplen entre los lados y ángulos de un triángulo cualquiera, y que es útil para resolver ciertos tipos de problemas de triángulos.

La ley de los Senos dice así:

Donde A, B y C (mayúsculas) son los lados del triángulo, y ,  y  (minúsculas) son los ángulos del triángulo:

Observa que las letras minúsculas de los ángulos no están pegadas a su letra mayúscula. O sea, la  está en el ángulo opuesto de A. La  está en el ángulo opuesto de B. Y la  está en el ángulo opuesto de C. Siempre debe ser así cuando resuelvas un triángulo. Si no lo haces así, el resultado seguramente te saldrá mal.

Resolución de triángulos por la ley de los Senos

Resolver un triángulo significa encontrar todos los datos que te faltan, a partir de los datos que te dan (que generalmente son tres datos).

*Nota: No todos los problemas de resolución de triángulos se pueden resolver con la ley de los senos. A veces, por los datos que te dan, sólo la ley de los cosenos lo puede resolver.

En general, si en un problema de triángulos te dan como datos 2 ángulos y un lado, usa ley de los senos. Si por el contrario te dan dos lados y el ángulo que hacen esos dos lados, usa la ley del coseno.

Supongamos que te ponen el siguiente problema:

Resolver el triángulo siguiente:

Llamemos  al ángulo de 27° porque está opuesto al lado B;  al ángulo de 43° y A al lado de 5.

Lo que tenemos entonces es lo siguiente:

A = 5

B = ?

C = ?

 = 43°

 = 27°

 = ?

El ángulo  es muy fácil de encontrar, porque la suma de los ángulos internos de un triángulo siempre suma 180°. O sea que cuando te den dos ángulos de un triángulo, el tercero siempre sale así:

 = 180° -  – 

Esta fórmula es válida para cualquier triángulo. Así que apréndetela bien o apúntala por ahí porque la usarás muchísimo en matemáticas.

Sustituimos en ésta expresión los ángulos que nos dan y queda así:

 = 180° -43°- 27° = 180° - 70° = 110°

= 110°

Ya tenemos entonces los tres ángulos ,  y .

Para encontrar los lados faltantes usamos la ley de los senos:

Sustituyendo queda:

Nos fijamos ahora sólo en los dos primeros términos:

Haremos de cuenta como que el tercer término, (la que tiene la C) no existe ahorita, de la igualdad que está en el recuadro se puede despejar la B, (como el sen (27°) está dividiendo abajo, pasa del lado izquierdo multiplicando arriba):

y calculamos ésta expresión:

3.32838 = B

y esto es lo que vale B.

Ya nada más falta calcular C. Para ello, volvemos a usar la ley de los Senos, pero ahora si nos vamos a fijar en una igualdad que tenga a la C:

(Observa que ya sustituimos el valor de la B en la igualdad.)

Despejemos la C, (como sen (110°) está dividiendo abajo, pasa del lado

izquierdo multiplicando arriba):

hacemos las operaciones y queda:

6.88925 = C

y con este resultado ya queda resuelto todo el triángulo.

Nota que si en lugar de haber usado la igualdad de la derecha hubiéramos usado la de los extremos, el resultado habría sido exactamente el mismo:

o escrito ya sin el término de en medio:

igual despejamos la C, (como sen (110°) está dividiendo abajo, pasa del lado izquierdo multiplicando arriba):

y si haces las operaciones verás que te dá C = 6.88925 igual que antes.

Ley de cosenos

C2 = A2 + B2 –

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com