Limite Y Derivada
Enviado por qfollon • 20 de Junio de 2015 • 420 Palabras (2 Páginas) • 246 Visitas
Introducción El límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. El límite de una función es un concepto fundamental del cálculo diferencial matemático. El límite se utiliza para el cálculo infinitesimal o infinitésimo, que se puede definir como el cálculo de una cantidad infinitamente pequeña, en el que deben definirse estrictamente límites y considerarlos como números en la práctica. Se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación e integración, entre otros. Y la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente.
Derivada de una función en un punto
La derivada de la función f(x) en el punto x = a es el valor del límite, si existe, de un cociente incremental cuando el incremento de la variable tiende a cero.
Hallar la derivada de la función f(x) = 3x2 en el punto x = 2.
a función derivada de una función f(x) es una función que asocia a cada número real su derivada, si existe. Se denota por f'(x).
Calcular la función derivada de f(x) = x2 − x + 1.
Derivada de una función en un punto
La derivada de la función f(x) en el punto x = a es el valor del límite, si existe, de un cociente incremental cuando el incremento de la variable tiende a cero.
Interpretación geométrica de la derivada
La pendiente de la tangente a la curva en un punto es igual a la derivada de la función en ese punto.
mt = f'(a)
Interpretación física de la derivada
La velocidad instantánea es el límite de la velocidad media cuando Δt tiende a cero, es decir la derivada del espacio respecto al tiempo.
Función derivada
La función derivada de una función f(x) es una función que asocia a cada número real su derivada, si existe. Se denota por f'(x).
Derivadas laterales
Derivada por la izquierda
Derivada por la derecha
Una función es derivable en un punto si, y sólo si, es derivable por la izquierda y por la derecha en dicho punto y las derivadas laterales coinciden.
Derivabilidad y continuidad
Si una función es derivable en un punto x = a, entonces es continua para x = a.
El reciproco es falso, es decir, hay funciones que son continuas en un punto y que, sin embargo, no son derivables.
...