Matematicas discretas. Teoría de grafos
Enviado por Armando43664070 • 17 de Septiembre de 2021 • Monografía • 1.842 Palabras (8 Páginas) • 193 Visitas
Materia:
Matemáticas discretas
Título:
Teoría de grafos
Nombre:
Grupo:
Profesor:
Teoría de grafos
Diagrama de un grafo con 6 vértices y 7 aristas. En matemáticas y en ciencias de la computación, la teoría de grafos estudia las propiedades de los grafos (también llamadas gráficas). Un grafo es un conjunto, no vacío, de objetos llamados vértices (o nodos) y una selección de pares de vértices, llamados aristas que pueden ser orientados o no. Típicamente, un grafo se representa mediante una serie de puntos (los vértices) conectados por líneas (las aristas).
Existen diferentes formas de almacenar grafos en una computadora. La estructura de datos usada depende de las características del grafo y el algoritmo usado para manipularlo. Entre las estructuras más sencillas y usadas se encuentran las listas y las matrices, aunque frecuentemente se usa una combinación de ambas. Las listas son preferidas en grafos dispersos porque tienen un eficiente uso de la memoria. Por otro lado, las matrices proveen acceso rápido, pero pueden consumir grandes cantidades de memoria.
Estructura de lista
Grafo de lista de adyacencia. lista de incidencia - Las aristas son representadas con un vector de pares (ordenados, si el grafo es dirigido), donde cada par representa una de las aristas. lista de adyacencia.
- Cada vértice tiene una lista de vértices los cuales son adyacentes a él.
Esto causa redundancia en un grafo no dirigido (ya que A existe en la lista de adyacencia de B y viceversa), pero las búsquedas son más rápidas, al costo de almacenamiento extra. En esta estructura de datos la idea es asociar a cada vértice i del grafo una lista que contenga todos aquellos vértices j que sean adyacentes a él. De esta forma sólo reservará memoria para los arcos adyacentes a i y no para todos los posibles arcos que pudieran tener como origen i.
El grafo, por tanto, se representa por medio de un vector de n componentes (si |V|=n) donde cada componente va a ser una lista de adyacencia correspondiente a cada uno de los vértices del grafo. Cada elemento de la lista consta de un campo indicando el vértice adyacente. En caso de que el grafo sea etiquetado, habrá que añadir un segundo campo para mostrar el valor de la etiqueta.
Estructuras matriciales
• Matriz de incidencia.
El grafo está representado por una matriz de A (aristas) por V (vértices), donde [arista, vértice] contiene la información de la arista (1 - conectado, 0 - no conectado) • Matriz de adyacencia
- El grafo está representado por una matriz cuadrada M de tamaño, donde es el número de vértices. Si hay una arista entre un vértice x y un vértice y, entonces el elemento es 1, de lo contrario, es 0.
Definiciones Vértice
Los vértices constituyen uno de los dos elementos que forman un grafo. Como ocurre con el resto de las ramas de las matemáticas, a la Teoría de Grafos no le interesa saber qué son los vértices.
Diferentes situaciones en las que pueden identificarse objetos y relaciones que satisfagan la definición de grafo pueden verse como grafos y así aplicar la Teoría de Grafos en ellos.
Grafo En la figura
V = {a, b, c, d, e, f}, y A = {ab, ac, a, bc, bd, df, e}. Un grafo es una pareja de conjuntos, donde es el conjunto de vértices, y es el conjunto de aristas, este último es un conjunto de pares de la forma tal que. Para simplificar, notaremos la arista como.
En teoría de grafos, sólo queda lo esencial del dibujo: la forma de las aristas no es relevantes, sólo importa a qué vértices están unidas. La posición de los vértices tampoco importa, y se puede variar para obtener un dibujo más claro.
Teoría de grafos Muchas redes de uso cotidiano pueden ser modeladas con un grafo: una red de carreteras que conecta ciudades, una red eléctrica o la red de drenaje de una ciudad. Subgrafo
Un subgrafo de un grafo G es un grafo cuyos conjuntos de vértices y aristas son subconjuntos de los de G. Se dice que un grafo G contiene a otro grafo H si algún subgrafo de G es H o es isomorfo a H (dependiendo de las necesidades de la situación). El subgrafo inducido de G es un subgrafo G' de G tal que contiene todas las aristas adyacentes al subconjunto de vértices de G. Definición: Sea G= (V, A). G’=(V’,A’) se dice subgrafo de G si: 1- V’ V 2- A' A 3- (V’,A’) es un grafo • Si G’=(V’,A’) es subgrafo de G, para todo v G se cumple gr (G’, v)≤ gr (G, v) G2 es un subgrafo de G.
Aristas dirigidas y no dirigidas En algunos casos es necesario asignar un sentido a las aristas, por ejemplo, si se quiere representar la red de las calles de una ciudad con sus direcciones únicas. El conjunto de aristas será ahora un subconjunto de todos los posibles pares ordenados de vértices, con (a, b) ≠ (b, a). Los grafos que contienen aristas dirigidas se denominan grafos orientados, como el siguiente:
Las aristas no orientadas se consideran bidireccionales para efectos prácticos (equivale a decir que existen dos aristas orientadas entre los nodos, cada una en un sentido).
En el grafo anterior se ha utilizado una arista que tiene sus dos extremos idénticos: es un lazo (o bucle), y aparece también una arista bidireccional, y corresponde a dos aristas orientadas.
Aquí V = {a, b, c, d, e}, y A = {(a, c), (d, a), (d, e), (a, e), (b, e), (c, a), (c, c), (d, b)}. Se considera la característica de "grado" (positivo o negativo) de un vértice (y se indica como), como la cantidad de aristas que llegan o salen de él; para el caso de grafos no orientados, el grado de un vértice.
...