Movimiento Circular Uniforme
Enviado por kar123 • 12 de Noviembre de 2013 • 1.775 Palabras (8 Páginas) • 459 Visitas
Movimiento circular uniforme
El módulo del vector velocidad es constante en un movimiento circular uniforme.
En física, el movimiento circular uniforme describe el movimiento de un cuerpo atravesando, con rapidez constante, una trayectoria circular.
Aunque la rapidez del objeto es constante, su velocidad no lo es: La velocidad, una magnitud vectorial, tangente a la trayectoria, en cada instante cambia de dirección. Esta circunstancia implica la existencia de una aceleración que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección.
Cinemática del MCU en mecánica clásica
[editar] Ángulo y velocidad angular
El ángulo abarcado en un movimiento circular es igual al cociente entre la longitud del arco de circunferencia recorrida y el radio.
La longitud del arco y el radio de la circunferencia son magnitudes de longitud, por lo que el desplazamiento angular es una magnitud a dimensional, llamada radián. Un radián es un arco de circunferencia de longitud igual al radio de la circunferencia, y la circunferencia completa tiene radianes.
La velocidad angular es la variación del desplazamiento angular por unidad de tiempo:
Partiendo de estos conceptos se estudian las condiciones del movimiento circular uniforme, en cuanto a su trayectoria y espacio recorrido, velocidad y aceleración, según el modelo físico cinemático.
Vector de posición
Se considera un sistema de referencia en el plano xy, con vectores unitarios en la dirección de estos ejes . La posición de la partícula en función del ángulo de giro y del radio r es en un sistema de referencia cartesiano xy:
De modo que el vector de posición de la partícula en función del tiempo es:
Siendo:
: es el vector de posición de la partícula.
: es el radio de la trayectoria.
Al ser un movimiento uniforme, a iguales incrementos de tiempo le corresponden iguales desplazamientos angulares, lo que se define como velocidad angular (ω):
El ángulo (φ), debe medirse en radianes:
donde s es la longitud del arco de circunferencia
Según esta definición:
1 vuelta = 360° = 2 π radianes
½ vuelta = 180° = π radianes
¼ de vuelta = 90° = π /2 radianes
Velocidad Tangencial
La velocidad se obtiene a partir del vector de posición mediante derivación:
En donde se ve la relación entre la velocidad angular y la velocidad tangencial
El vector velocidad es tangente a la trayectoria, lo que puede comprobarse fácilmente efectuando el producto escalar y comprobando que es nulo.
Aceleración:
La aceleración se obtiene a partir del vector velocidad mediante derivación:
de modo que
Así pues, el vector aceleración tiene dirección opuesta al vector de posición, normal a la trayectoria y apuntando siempre hacia el centro de la trayectoria circular. por lo que acostumbramos a referirnos a ella como aceleración normal o centrípeta.
El módulo de la aceleración es el cuadrado de la velocidad angular por el radio de giro, aunque lo podemos expresar también en función de la celeridad de la partícula, ya que, en virtud de la relación , resulta
Esta aceleración es la única que experimenta la partícula cuando se mueve a velocidad constante en una trayectoria circular, por lo que la partícula deberá ser atraída hacia el centro mediante una fuerza centrípeta que la aparte de una trayectoria rectilínea, como correspondería por la ley de inercia.
Período y frecuencia
El periodo representa el tiempo necesario para que el móvil complete una vuelta y viene dado por:
La frecuencia mide el número de revoluciones o vueltas completadas por el móvil en la unidad de tiempo y viene dada por:
Obviamente, la frecuencia es el recíproco del período:
Movimiento circular en mecánica relativista
Si bien la teoría especial de la relatividad permite que una partícula no cargada esté en movimiento circular uniforme, esto en general no resulta posible para una partícula cargada a la que no se le suministra energía adicional. Esto se debe a que una partícula cargada acelerada emite radicación electromagnética perdiendo energía en ese proceso. Eso es precisamente lo que sucede en un sincrotrón que es un tipo de acelerador de partículas (de hecho la radicación de sincrotrón emitida por partículas aceleradas en un anillo puede usarse con fines médicos).
Formulas:
A = Vf- vo/ t
D = Vot + at^2/2
Vf^2 = vo^2 + 2ad
Vf = Vo + at
Bibliografía
Ortega, Manuel R. (1989-2006) (en español). Lecciones de Física (4 volúmenes). Monytex. ISBN 84-404-4290-4, ISBN 84-398-9218-7, ISBN 84-398-9219-5, ISBN 84-604-4445-7.
Resnick, Robert & Halliday, David (2004) (en español). Física 4ª. CECSA, México. ISBN 970-24-0257-3.
Tipler, Paul A. (2000) (en español). .223 Física para la ciencia y la tecnología (2 volúmenes). Barcelona: Ed. Reverte. ISBN 84-291-4382-3.
Movimiento circular uniformemente acelerado
El movimiento circular uniformemente acelerado, MCUA, es un caso particular de la velocidad y la aceleración angular, es un movimiento circular cuya aceleración α es constante.
Dada la aceleración angular α podemos obtener el incremento de la velocidad angular ω entre los instantes t0 y t1. La ecuación resultante de la velocidad es:
ω (t)=ω0+α0(t1-t0)
Siendo α la aceleración, ω0 la velocidad inicial, y (t1-t0) el incremento de tiempo.
Dada la velocidad angular ω en función del tiempo, podemos hallar la posición θ entre los instantes t0 y t1. La ecuación resultante es:
Δθ=ω0·Δt +½a0·(Δt)²
Siendo a0 la aceleración inicial, ω0 la velocidad inicial, y (t1-t0) el incremento de tiempo.
Apréciese la similitud con las fórmulas del MRUA, movimiento rectilíneo uniformemente acelerado.
En física, el movimiento uniformemente acelerado (MUA) es aquel movimiento
...