ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Muestra Estadistica


Enviado por   •  7 de Octubre de 2014  •  610 Palabras (3 Páginas)  •  233 Visitas

Página 1 de 3

En estadística una muestra estadística (también llamada muestra aleatoria o simplemente muestra) es un subconjunto de casos o individuos de una población estadística.

Las muestras se obtienen con la intención de inferir propiedades de la totalidad de la población, para lo cual deben ser representativas de la misma. Para cumplir esta característica la inclusión de sujetos en la muestra debe seguir una técnica de muestreo. En tales casos, puede obtenerse una información similar a la de un estudio exhaustivo con mayor rapidez y menor coste (véanse las ventajas de la elección de una muestra, más abajo).

Por otra parte, en ocasiones, el muestreo puede ser más exacto que el estudio de toda la población porque el manejo de un menor número de dato provoca también menos errores en su manipulación. En cualquier caso, el conjunto de individuo de la muestra son los sujetos realmente estudiados.

El número de sujetos que componen la muestra suele ser inferior que el de la población, pero suficiente para que la estimación de los parámetros determinados tenga un nivel de confianza adecuado. Para que el tamaño de la muestra sea idóneo es preciso recurrir a su cálculo.

MUESTRA: Un conjunto de medidas u observaciones tomadas a partir de una población dada. Es un subconjunto de la población.

MUESTRA REPRESENTATIVA: Un subconjunto representativo seleccionado de una población de la cual se obtuvo.

Muestreo de juicio: Una muestra es llamada muestra de juicio cuando sus elementos son seleccionados mediante juicio personal. La persona que selecciona los elementos de la muestra, usualmente es un experto en la medida dada. Una muestra de juicio es llamada una muestra probabilística, puesto que este método está basado en los puntos de vista subjetivos de una persona y la teoría de la probabilidad no puede ser empleada para medir el error de muestreo, Las principales ventajas de una muestra de juicio son la facilidad de obtenerla y que el costo usualmente es bajo.

Si los eventos son mutuamente excluyentes, la ocurrencia de cualquier evento impide que otro eventos ocurra.

Reglas de adición: si dos eventos A y B son mutuamente excluyentes, la regla especial de adición indica que la probabilidad de que ocurra A o B es igual a la suma de sus probabilidades respectivas:

P(A o B) = P(A) + P(B)

Ejemplo

Aerolíneas Argentinas acaba de proporcionar la siguiente información de sus vuelos de Buenos Aires a Rosario:

Ejemplo

Si A es el evento de que un vuelo llegue antes de tiempo, entonces

P(A) = 100 /1000 = 0.1.

Si B es el evento de que un vuelo llegue demorado, entonces

P(B) = 75 /1000 = 0.075.

La probabilidad de que un vuelo llegue antes de tiempo o demorado es

P(A o B) = P(A) + P(B) = .1 + .075 = 0.175.

Si A y B son dos eventos que no son mutuamente

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com