ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Regresion y correlacion lineal simple


Enviado por   •  25 de Mayo de 2015  •  Ensayo  •  983 Palabras (4 Páginas)  •  525 Visitas

Página 1 de 4

AREA:

ESTADÍSTICA

Escuela de Ciencias Básicas Tecnología e Ingeniería

CIENCIAS BÁSICAS

CURSO:

ESTADÍSTICA DESCRIPTIVA UNIDAD: REGRESION Y DETERMINACION

TEMA: REGRESION Y CORRELACION LINEAL SIMPLE

NUMERO DE LA PRÁCTICA 2

NOMBRE DE LA PRÁCTICA Regresión y correlación

NOMBRE DEL SOFTWARE Excel

Libre: ______x_____ Licenciado: _____________ (Marque con una X)

Aspectos Teóricos:

REGRESIÓN Y CORRELACIÓN

En muchos casos se requiere conocer más que el comportamiento de una sola variable, se requiere conocer la relación entre dos o más variables como la relación entre producción y consumo; salarios y horas de trabajo; oferta y demanda; salarios y productividad; la altura de un árbol y el diámetro de su tronco; el nivel socioeconómico de una persona y su grado de depresión; etc.

Muchos de estos comportamientos tienen una tendencia lineal, aunque hay muchos otros que lo hacen de forma curva. Para determinar el grado de correlación entre las variables, no basta con calcular la varianza explicada, pues existe el coeficiente de determinación o coeficiente de correlación; sin embargo, frecuentemente se utiliza un coeficiente de correlación rectilíneo, r siendo este un valor entre -1 y 1.

Para estas confrontaciones se utiliza el diagrama de dispersión que es plano cartesiano en el que se marcan los puntos los puntos correspondientes a los pares (x,y) de los valores de las variables.

El análisis de Regresión tiene los siguientes usos: el primero es obtener los estimadores de los parámetros, estimar la varianza del error, obtener los errores estándares de los parámetros estimados, probar la hipótesis sobre los parámetros, cálculo de valores estimados basados en la ecuación estimada, estimar el ajuste o la falta de ajuste del modelo.

El modelo a utilizar es Y = a + bx, a es el intercepto, b es la pendiente de la función, la que nos indica el cambio marginal de Y respecto a X.

Ejemplo

Una empresa de mensajería de entrega puerta a puerta, con el fin de mejorar la prestación del servicio desea establecer la relación que puede existir entre el tiempo empleado y la distancia recorrida para la entrega de un determinado producto.

Distancia en Kilómetros (x)

825

215

1070

550

480

920

1350

325

670

1215

Tiempo de entrega ( y) (días)

3,5

1,0

4,0

2,0

1,0

3,0

4,5

1,5

3,0

5,0

a. Realice un diagrama de dispersión a partir de los datos obtenidos

b. Determine la mejor ecuación que se ajusta a los datos.

Solución:

El diagrama de dispersión se obtiene mediante el asistente de gráficos. Trasladamos los datos a una hoja en Excel, seleccionamos la tabla donde están los datos <<Insertar<<Dispersión. En estilo de diseño puede personalizar su diagrama de barras.

Seleccionamos un diseño de grafico de la barra de herramientas y damos nombre a los ejes y al Diagrama.

Para hallar la recta de Regresión y la ecuación que mejor se ajusta a los datos, en el diagrama de dispersión hacemos click derecho sobre uno de los puntos y seleccionamos Agregar línea de tendencia.

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com