Sistema Equivalente De Fuerza
Enviado por Danielyse • 2 de Diciembre de 2014 • 906 Palabras (4 Páginas) • 367 Visitas
Sistema equivalente de Fuerzas
1.-Fuerzas externas que actúan en un cuerpo rígido:
Son las fuerzas de otros cuerpos que actúan sobre nuestro cuerpo de estudio; estas son las que causan que el cuerpo se mueva o permanezca en reposo.
Las fuerzas externas que actúan sobre el cuerpo, es decir las fuerzas que otros cuerpos, unidos o en contacto con él, le ejercen. Estas fuerzas son las fuerzas aplicadas por contacto, el peso y las reacciones de los apoyos.
Dos conceptos fundamentales de que el efecto de una fuerza sobre un cuerpo rígido son el momento de una fuerza con respecto a un punto y el momento de una fuerza con respecto a un eje
2.- Fuerzas internas que actúan en un cuerpo rígido:
Son las que mantienen unidas las partículas del cuerpo rígido
3.- Principio de transmisibilidad:
Establece que las condiciones de equilibrio o de movimiento de un cuerpo rígido permanecerán sin cambio si una fuerza F que actúa en un punto de un cuerpo rígido se sustituye por una fuerza F’ de la misma magnitud y la misma dirección, pero actuando en un punto diferente, siempre que las dos fuerzas tengan la misma línea de acción. Las fuerzas F y F’ tienen el mismo efecto obre el cuerpo rígido y se dice que son equivalentes.
4.- Producto vectorial de dos vectores
En álgebra lineal, el producto vectorial es una operación binaria entre dos vectores de un espacio euclídeo tridimensional que da como resultado un vector ortogonal a los dos vectores originales. Con frecuencia se lo denomina también producto cruz (pues se lo denota mediante el símbolo ×) o producto externo (pues está relacionado con el producto exterior).
Sean dos vectores a y b en el espacio vectorial ℝ3. El producto vectorial entre a y b da como resultado un nuevo vector, c. Para definir este nuevo vector es necesario especificar su módulo, dirección y sentido:
El módulo de c está dado por
||c|| = ||a|| ||b|| sinθ
Donde θ es el ángulo entre a y b.
La dirección de c es tal que c es ortogonal a a y ortogonal a b.
El sentido en el que apunta el vector c está dado por la regla de la mano derecha.
El producto vectorial entre a y b se denota mediante a × b, por ello se lo llama también producto cruz. Para evitar confusiones con la letra x, algunos autores denotan el producto vectorial mediante a ∧ b cuando escriben a mano.
El producto vectorial puede definirse de una manera más compacta de la siguiente manera:
a x b = n ||a|| ||b|| sinθ
Donde n es el vector unitario y ortogonal a los vectores a y b y su sentido está dado por la regla del sacacorchos y θ es, como antes, el ángulo entre a y b. A la regla del sacacorchos se la llama a menudo también regla de la mano derecha.
Producto vectorial
El producto vectorial de los vectores a y b, se define como un vector, donde
...