Sistemas De Numeracion
ripponc13 de Febrero de 2014
740 Palabras (3 Páginas)901 Visitas
3.2 Actividades de contextualización e identificación de conocimientos necesarios para el aprendizaje.)
Estimado aprendiz en este punto de la guía usted relacionara los conceptos básicos del área de las matemáticas que recuerde, dando 3 ejemplos por cada uno de los siguientes temas:
1. Los Conjuntos Numéricos
Son colecciones, agrupaciones o grupos de números con características comunes que los definen como una clase, entre los más comunes están Los Números Naturales, Los Enteros, Los Racionales, Los Irracionales y Los Reales.
EJEMPLOS
A ) N = Conjunto de los Números Naturales
N = { 1, 2, 3, 4, 5, 6, 7,.......}
El conjunto de los Números Naturales surgió de la necesidad de contar, lo cual se manifiesta en el ser humano desde sus inicios.
Este conjunto se caracteriza porque:
Tiene un número ilimitado de elementos
Cada elemento tiene un sucesor y todos, excepto el 1, un antecesor.
El sucesor de un número natural se obtiene sumando uno (+1); el antecesor se obtiene restando uno (-1).
B ) N* = N0 = Conjunto de los Números Cardinales
N 0 = { 0, 1, 2, 3, 4, 5, 6,.....}
Al Conjunto de los Números Naturales se le agregó el 0 (cero) y se forma el Conjunto de los Números Cardinales.
C ) Z = Conjunto de los Números Enteros
Z = { ..... –3, -2, -1, 0, 1, 2, 3,...}
Z = N* U Conjunto de los Números Enteros negativos
Z = Tiene 3 Subconjuntos:
Enteros Negativos: Z ¯
Enteros Positivos: Z +
Enteros Positivos y el Cero: Z 0+
Por lo tanto, el Conjunto de los Números Enteros es la unión de los tres subconjuntos mencionados.
Z = Z ¯ U {0} U Z +
2. Operaciones aritméticas
Las cuatro operaciones básicas (o elementales) de la aritmética son:
• Suma
• Resta
• Multiplicación
• División
En el sentido de la definición expuesta, el sustantivo «aritmética», en los primeros grados de enseñanza escolar, suele designarse simplemente como «matemática», la distinción comienza a precisarse con la introducción del álgebra y la consiguiente implementación de "letras" para representar "variables" e "incógnitas", así como las definiciones de las propiedades algebraicas tales como conmutatividad, asociatividad o distributividad, que son propias del álgebra elemental.4
EJEMPLOS
• Operaciones de escalas
• Operación con fracciones
• Operaciones de múltiplos y divisores
3. TÉRMINO ALGEBRAICO Y SUS PARTES
Se llama término a toda expresión algebraica cuyas partes no están separadas por los signos + o -. Así, por ejemplo xy2 es un término algebraico.
En todo término algebraico pueden distinguirse cuatro elementos: el signo, el coeficiente, la parte literal y el grado.
Signo
Los términos que van precedidos del signo + se llaman términos positivos, en tanto los términos que van precedidos del signo – se llaman términos negativos. Pero, el signo + se acostumbra omitir delante de los términos positivos; así pues, cuando un término no va precedido de ningún signo se sobreentiende de que es positivo.
Coeficiente
Se llama coeficiente al número o letra que se le coloca delante de una cantidad para multiplicarla. El coeficiente indica el número de veces que dicha cantidad debe tomarse como sumando. En el caso de que una cantidad no vaya precedida de un coeficiente numérico se sobreentiende que el coeficiente es la unidad.
Parte literal
La parte literal está formada por las letras que haya en el término.
Grado
El grado de un
...