Superconductores
Enviado por roheca60 • 18 de Enero de 2012 • 3.601 Palabras (15 Páginas) • 1.217 Visitas
INTRODUCION
En 1911, el físico holandés Kammerlingh Onnes observó que la resistencia eléctrica del mercurio adquiría un valor de cero cuando éste se enfriaba a una temperatura cercana al cero absoluto (4.2 grados Kelvin o menos 269 grados Celsius). De este modo se descubrió el fenómeno de la superconductividad.
En 1933, Meissner y Ochsenfeld descubrieron que cuando se le aplica un campo magnético externo a un material superconductor, éste lo rechaza. La combinación de estas propiedades (conductividad infinita y expulsión del campo magnético) caracterizan a los materiales superconductores.
La doctora Elizabeth Chavira Martínez, investigadora del Instituto de Investigación en Materiales de la UNAM, nos narra algunos de los episodios más importantes de la ciencia de materiales que siguieron a estos descubrimientos.
Durante las primeras décadas de este siglo se llegó a pensar que la superconductividad quedaría sujeta sin remedio a muy bajas temperaturas. Empero, a principio de los setenta se obtuvo un material superconductor (una aleación de niobio 3-germanio) a una temperatura crítica de 23 grados Kelvin. La temperatura crítica, es aquella a la que un material se hace superconductor.
En 1986, el físico Karl Alex Müller, del laboratorio de IBM en Zurich, observó que un óxido cerámico, compuesto de bario, lantano y cobre tenía una temperatura crítica de 30 grados Kelvin. Estaba en marcha la carrera por obtener superconductores de altas temperaturas.
En 1987, el grupo del doctor Chu, en Estados Unidos, descubrió un material de itrio-bario-cobre-oxígeno que es superconductor a 93 grados Kelvin (menos 180 grados centígrados). Un gran paso, pues ya se podía prescindir del helio líquido, que es muy caro, para enfriar el material. La temperatura crítica había superado los 77 grados Kelvin (menos 196 grados Celsius), punto de licuefacción del nitrógeno, que es muy abundante.
A principio de los ochenta el químico francés Bernard Raveou sintetizó un compuesto de bismuto-estroncio-cobre-oxígeno. Posteriormente, otros investigadores notaron que al aumentar los planos de cobre-oxígeno de este compuesto aumentaba la temperatura crítica. Pero, como todo, esto tiene un límite.
Recientemente, el doctor Chu elaboró un material que contiene mercurio sometido a altas presiones y reportó que su temperatura crítica es de 165 grados Kelvin (menos 108 grados centígrados). La más alta hasta ahora en un material estable.
Los nuevos compuestos cerámicos de alta temperatura crítica tienen una estructura cristalina del tipo de la perousquita. ``Estos compuestos tienen deficiencia de oxígenos (aniones) y esta deficiencia les da las propiedades superconductoras''.
OBJETIVO
Con este presente trabajo pretendo dar a conocer los ultimos avances tecnológicos dentro de los superconductores, asi como sus aplicaciones en el mundo moderno.
Este trabajo de investigación esta relacionado con los “cerámicos”, tema que estamos cursando actualmente.
SUPERCONDUCTORES
Un superconductor tiene dos características esenciales. Por debajo de una temperatura crítica característica (Tc), dependiente de la naturaleza y estructura del material, los superconductores exhiben resistencia cero al flujo de electricidad y pueden expulsar el flujo magnético de su interior, dando lugar al fenómeno de levitación magnética.
El primer superconductor, mercurio, descubierto en 1911 por G. Holst y K. Onnes, sólo lo era a temperaturas inferiores a 4.2 K (-268 °C) y a principios de 1986 el récord de temperatura crítica estaba en 23 K correspondiente al compuesto Nb3Ge. La rata de crecimiento había sido de 0.3 grados por año y los superconductores a temperatura ambiente parecían inalcanzables.
A finales de 1986 la comunidad científica internacional fué sorprendida cuando J. G. Berdnorz y K. A. Müller, del centro de investigaciones de la IBM en Zurich, observaron una Tc -35 K en el compuesto de óxido de Cobre, Bario y Lantano (BaLaCuO) sintetizado con anterioridad (1983) por el grupo de B. Raveau y C. Michel en Francia. La euforia desatada por este descubrimiento condujo a que poco tiempo después, se descubriera que la Tc podía seguir subiendo lo que llevó al descubrimiento de nuevos materiales superconductores, con Tc por encima del punto de ebullición del nitrógeno líquido (-77 K).
Se despertaron entonces atrevidas esperanzas que fueron sofocadas relativamente pronto por varias dificultades tanto en el plano teórico, donde los conocimientos acumulados sobre el estado superconductor hasta 1986 fueron incapaces de describir la superconductividad de alta Tc, como en lo referente a las aplicaciones, puesto que el estado superconductor se destruye al ser sometido a un campo magnético, cosa que debe hacerse en muchas de las aplicaciones concebibles.
Diez años después, cuando la euforia inicial ha cedido y las noticias de éxitos sensacionalistas se han vuelto escasas, muchas ideas novedosas relativas a las características de los nuevos cupratos superconductores se han decantado elevando significativamente el nivel del conocimiento, y a pesar de las dificultades anotadas anteriormente estos cupratos se utilizan ya en la microelectrónica, por ejemplo como sensores de campo magnético (SQUID: interferómetro cuántico superconductor), filtros, resonadores etc.
Y ¿PARA QUE SIRVEN?
Si algún día los superconductores de temperatura ambiente llaman a nuestra puerta nos veremos inmersos en una revolución tecnología sin precedentes. Pero aunque no lo hagan, ya existen muchos equipos que utilizan la superconductividad en su funcionamiento.
Un pequeño imán cilíndrico flota por encima de un superconductor. El vapor es nitrógeno líquido en ebullición, que mantiene al superconductor en un estado de resistencia nula. Cuando el imán desciende hacia el superconductor, induce una corriente eléctrica, que a su vez crea un campo magnético opuesto al del imán. Como el superconductor no tiene resistencia eléctrica, la corriente inducida sigue fluyendo y mantiene el imán suspendido indefinidamente.
A continuación un repaso a las aplicaciones mas espectaculares de este fenómeno.
Por su ausencia de resistencia, los superconductores se han utilizado para fabricar electroimanes que generan campos magnéticos intensos sin pérdidas de energía. Los imanes superconductores se han utilizado en estudios de materiales y en la construcción de potentes aceleradores de partículas. Aprovechando los efectos cuánticos de la superconductividad se han desarrollado dispositivos que miden la corriente eléctrica, la tensión y el campo magnético con una sensibilidad sin precedentes.
El descubrimiento de mejores compuestos semiconductores es un paso
...