ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teorema De Steiner


Enviado por   •  28 de Mayo de 2012  •  424 Palabras (2 Páginas)  •  1.806 Visitas

Página 1 de 2

TEOREMA DE STEINER O TEOREMA DE LOS EJES PARALELOS

El teorema de Steiner (denominado en honor de Jakob Steiner) establece que el momento de inercia con respecto a cualquier eje paralelo a un eje que pasa por el centro de masa, es igual al momento de inercia con respecto al eje que pasa por el centro de masa más el producto de la masa por el cuadrado de la distancia entre los dos ejes:

Dónde: Ieje es el momento de inercia respecto al eje que no pasa por el centro de masa; I(CM)eje es el momento de inercia para un eje paralelo al anterior que pasa por el centro de masa; M(Masa Total) y h (Distancia entre los dos ejes paralelos considerados).

La demostración de este teorema resulta inmediata si se considera la descomposición de coordenadas relativa al centro de masas C inmediata:

Donde el segundo término es nulo puesto que la distancia vectorial promedio de masa en torno al centro de masa es nula, por la propia definición de centro de masa.

El centro de gravedad y el centro de masa pueden no ser coincidentes, dado que el centro de masa sólo depende de la geometría del cuerpo, en cambio, el centro de gravedad depende del campo gravitacional en el que está inmerso dicho cuerpo.

TEOREMA DE STEINER

El teorema de Steiner es una fórmula que nos permite calcular el momento de inercia de un sólido rígido respecto de un eje de rotación que pasa por un punto O, cuando conocemos el momento de inercia respecto a un eje paralelo al anterior y que pasa por el centro de masas.

El momento de inercia del sólido respecto de un eje que pasa por O es

El momento de inercia respecto de un eje que pasa por C es

Para relacionar IO e IC hay que relacionar ri y Ri.

En la figura, tenemos que

El término intermedio en el segundo miembro es cero ya que obtenemos la posición xC del centro de masa desde el centro de masa.

Ejemplo

Sea una varilla de masa M y longitud L, que tiene dos esferas de masa m y radio r simétricamente dispuestas a una distancia d del eje de rotación que es perpendicular a la varilla y pasa por el punto medio de la misma.

Un péndulo consiste en una varilla de masa M y longitud L, y una lenteja de forma cilíndrica de masa m y radio r. El péndulo puede oscilar alrededor de un eje perpendicular a la varilla que pasa por su extremo O

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com