ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Termodinamica


Enviado por   •  2 de Febrero de 2013  •  1.910 Palabras (8 Páginas)  •  386 Visitas

Página 1 de 8

TERMODINAMICA.- INTERACCIONES: CALOR Y TRABAJO

Calorimetría:

Calor una forma de energía: Cuando dos sistemas, a temperaturas diferentes, se ponen en contacto, la temperatura final que ambos alcanzan tiene un valor intermedio entre las dos temperaturas iniciales. Ha habido una diferencia de temperatura en estos sistemas. Uno de ellos ha perdido "calor" (su variación de temperatura es menor que cero ya que la temperatura final es menor que la inicial) y el otro ha ganado "calor" (su variación de temperatura es positiva). La cantidad de calor (cedida uno al otro) puede medirse, es una magnitud escalar que suele ser representada mediante la letra Q. Las unidades para medir el calor son la caloría, kilo caloría (1000 cal), etc.

La caloría puede definirse como la "cantidad de calor" necesaria para elevar en un grado de temperatura, un gramo (masa) de materia: 1 cal  1ºC.1 g

Conducción del calor: transferencia de energía causada por la diferencia de temperatura entre dos partes adyacentes de un cuerpo. El calor se transfiere mediante convección, radiación o conducción. Aunque estos tres procesos pueden tener lugar simultáneamente, puede ocurrir que uno de los mecanismos predomine sobre los otros dos.

Conducción: es la única forma de transferencia de calor en los sólidos.

Si consideramos una lámina cuya área de sección recta sea A y espesor (x), expuesta a diferentes temperaturas (T) en cada una de sus caras, se puede medir la cantidad de calor (Q) que fluye perpendicularmente a las caras en un determinado tiempo (t). La relación (directamente proporcional) entre cantidad de calor (Q) y el tiempo (t) determina la velocidad de transmisión (v) del calor a través del área A; mientras que la relación (directamente proporcional) entre la variación de temperatura (T) y el espesor (x) se llama gradiente de temperatura. La igualdad se obtiene mediante una constante de proporcionalidad (k) llamada conductividad térmica.

La dirección de flujo del calor será aquella en la que aumenta x; como el calor fluye en dirección en que disminuye T, se introduce un signo menos en la ecuación. Lo que significa que Q/t es positiva cuando T/x es negativa.

Equivalente mecánico del Calor: Si el calor es precisamente otra forma de energía, cualquier unidad de energía puede ser una unidad de calor. El tamaño relativo de las "unidades de calor" y las "unidades mecánicas" puede encontrarse a partir de los experimentos en los cuales una cantidad conocida de energía mecánica, medida en joules, se añade al sistema (recipiente de agua, por ejemplo). Del aumento de temperatura medido puede calcularse cuanto calor (en calorías) tendremos que añadir a la muestra de agua para producir el mismo efecto. De esa manera puede calcularse la relación entre Joule y calorías, es decir, el llamado equivalente mecánico del calor.

Originalmente Joule utilizó un aparato en el cual unas pesas, al caer, hacían girar un conjunto de paletas sumergidas en agua. La pérdida de energía mecánica (debido al rozamiento) se calculaba conociendo las pesas y las alturas de las cuales caían. La energía calórica equivalente era determinada a través de la masa de agua y su aumento de temperatura. Los resultados aportados fueron: 1 kcal = 1000 cal = 4186 joules.

Es decir 4186 Joules de energía elevarán la temperatura de 1 Kg. de agua en 1 ºC, lo mismo que 1000 calorías.

1 Kcal = 4186 J , 1 cal = 4,186 J , 0,24 cal = 1 J

Convección: Si existe una diferencia de temperatura en el interior de un fluido (líquido o un gas) es casi seguro que se producirá un movimiento llamado convección.

Radiación: La radiación presenta una diferencia fundamental respecto a la conducción y la convección: las sustancias que intercambian calor no tienen que estar en contacto, sino que pueden estar separadas por un vacío. La vibración de los electrones (salto cuántico) está determinada por la cantidad de energía absorbida. Esta energía es liberada en forma de radiación (luz, calor, rayos x) dependiendo de la energía de estimulación administrada.

La Termodinámica estudia la transferencia de energía que ocurre cuando un sistema sufre un determinado proceso (termodinámico) que produce un cambio llevando de un estado a otro del sistema.

TRABAJO

La relativa simplicidad con que se logra definir el significado del calor desaparece cuando la transferencia de energía se refiere al trabajo. La razón es que existen diferentes tipos de trabajo (mecánico, eléctrico, magnético) y no resulta evidente encontrar lo que es común a todos ellos y que, a la vez, los diferencia del calor.

Las expresiones de la Tabla I, se refieren a algún cuerpo o sistema A sobre el cual actúa una fuerza aplicada por algún otro sistema A’. En Mecánica el sistema A’ usualmente no se toma en cuenta; ni siquiera se menciona. Así, un cuerpo cualquiera al que se le aplica una fuerza de fricción variará su energía mecánica, sin que usualmente nos interese lo que le sucede al otro cuerpo cuya superficie ha interaccionado con el cuerpo objeto de estudio. La representación correspondiente al flujo de energía en forma de trabajo sería similar a la Figura 1, sustituyendo el calor por el trabajo W

TABLA I

(I) Mecánica de la partícula

Teorema del trabajo y la energía WR= ∆EC

Trabajo de una fuerza conservativa WC= - ∆EP

TRABAJO no conservativo WNC= ∆EM

(II) Mecánica de los Sistemas de Partículas

Teorema del trabajo

y la energía

WR(externo)+ WR(interno)= ∆EC b

INTERACCIÓN TRABAJO Y CALOR

LATIERRA recibe energía del Sol, la cual se aprovecha de muchas maneras. Una gran parte es absorbida por la atmósfera y los mares mientras que una porción relativamente pequeña es utilizada por las plantas para realizar el proceso de fotosíntesis. Nuestro planeta también emite energía al espacio que lo rodea, de tal forma que la energía interna de la Tierra es prácticamente constante y por lo tanto, la temperatura global también se mantiene.

Figura 26. Un sistema aislado no intercambia ni masa ni energía con sus alrededores.

la energía total del Universo (sistema + alrededores) será la misma, esto es:

Usist. + Ualr. = Utotal= Constante

Figura 27. El sistema recibe energía de los alrededores.

...

Descargar como (para miembros actualizados) txt (12 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com