ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Minios Cuadrados


Enviado por   •  21 de Octubre de 2013  •  1.090 Palabras (5 Páginas)  •  317 Visitas

Página 1 de 5

Antecedentes

Mínimos cuadrados es una técnica de análisis numérico enmarcada dentro de la optimización matemática, en la que, dados un conjunto de pares ordenados: variable independiente, variable dependiente, y una familia de funciones, se intenta encontrar la función continua, dentro de dicha familia, que mejor se aproxime a los datos (un "mejor ajuste"), de acuerdo con el criterio de mínimo error cuadrático.

En su forma más simple, intenta minimizar la suma de cuadrados de las diferencias en las ordenadas (llamadas residuos) entre los puntos generados por la función elegida y los correspondientes valores en los datos. Específicamente, se llama mínimos cuadrados promedio (LMS) cuando el número de datos medidos es 1 y se usa el método de descenso por gradiente para minimizar el residuo cuadrado. Se puede demostrar que LMS minimiza el residuo cuadrado esperado, con el mínimo de operaciones (por iteración), pero requiere un gran número de iteraciones para converger.

Desde un punto de vista estadístico, un requisito implícito para que funcione el método de mínimos cuadrados es que los errores de cada medida estén distribuidos de forma aleatoria. El teorema de Gauss-Márkov prueba que los estimadores mínimos cuadráticos carecen de sesgo y que el muestreo de datos no tiene que ajustarse, por ejemplo, a una distribución normal. También es importante que los datos a procesar estén bien escogidos, para que permitan visibilidad en las variables que han de ser resueltas (para dar más peso a un dato en particular, véase mínimos cuadrados ponderados).

La técnica de mínimos cuadrados se usa comúnmente en el ajuste de curvas. Muchos otros problemas de optimización pueden expresarse también en forma de mínimos cuadrados, minimizando la energía o maximizando la entropía.

El día de Año Nuevo de 1801, el astrónomo italiano Giuseppe Piazzi descubrió el planeta enano Ceres. Fue capaz de seguir su órbita durante 40 días. Durante el curso de ese año, muchos científicos intentaron estimar su trayectoria con base en las observaciones de Piazzi (resolver las ecuaciones no lineales de Kepler de movimiento es muy difícil). La mayoría de las evaluaciones fueron inútiles; el único cálculo suficientemente preciso para permitir a Franz Xaver von Zach, astrónomo alemán, reencontrar a Ceres al final del año fue el de Carl Friedrich Gauss, por entonces un joven de 24 años (los fundamentos de su enfoque ya los había planteado en 1795, cuando aún tenía 18 años). Sin embargo, su método de mínimos cuadrados no se publicó sino hasta 1809, y apareció en el segundo volumen de su trabajo sobre mecánica celeste, Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium. El francés Adrien-Marie Legendre desarrolló el mismo método de forma independiente en 1805.

En 1829, Gauss fue capaz de establecer la razón del éxito maravilloso de este procedimiento: simplemente, el método de mínimos cuadrados es óptimo en muchos aspectos. El argumento concreto se conoce como teorema de Gauss-Márkov.

ea un conjunto de n puntos en el plano real, y sea una base de m funciones linealmente independiente en un espacio de funciones. Queremos encontrar una función que sea combinación lineal de las funciones base, de modo que , esto es:

Por tanto, se trata de hallar los m coeficientes que hagan que la función aproximante dé la mejor aproximación para los puntos dados . El criterio de "mejor aproximación" puede variar, pero en general se basa en aquél que minimice una "acumulación"

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com