Trigonometria
Enviado por sarithcastroz • 15 de Febrero de 2012 • 2.100 Palabras (9 Páginas) • 4.046 Visitas
Introducción.
En este ensayo tratare de dar a conocer un tema tan importante para nosotros que es la trigonometría y como fue su evolución a través del tiempo en todo el mundo, del mismo modo queriendo aprender y descubrir en que se basa cada científico matemático para desarrollar la teoría de la trigonometría y del mismo modo explorar un poco más sobre que fue la trigonometría que es hoy en día y como ha venido evolucionando.
También en este tema a tratar exploraremos muchas cosas sobre el debate de siglos atrás también así aclaras muchas preguntas como ¿Quiénes fueron los s que aportaron la teoría de la trigonometría?, ¿ ¿cómo se dio a conocer? ¿Qué pauta marco en la sociedad de la época?, Entre otras cosas aprenderemos sobre los genios o científicos matemáticos de la época, que dieron a conocer la teoría de la trigonometría, cuál fue su historia y evolución desde siglos atrás hasta la época moderna.
Estudiaremos los aportes que cada genio o científicos matemático dio a la teoría de la trigonometría explorando así un poco más sobre por qué la matemática en especial la trigonometría se aplica en diversas áreas de la vida del mismo modo compararemos cada unos de los diferentes conceptos desde el más antiguo hasta el más moderno y su evolución según el concepto de ellos.
Es así, como en este trabajo, se expondrá la historia y desarrollo de la trigonometría y de acuerdo a esto, fechas, épocas y principales precursores o personajes que lideraron el proceso o dieron los pasos fundamentales para el posterior desarrollo de esta importante rama de las matemáticas.
Espero lograr con el desarrollo e investigación sobre este ensayo un concepto propio sobre las funciones reales y su evolución a lo largo de la historia descubriendo así la importancia que tienen las funciones reales hoy en día, porque a lo largo de los años las funciones reales se aplican en nuestra vida, y aclarar un poco sobre el desarrollo y la evolución del mundo entero.
La Trigonometría es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Los babilonios y los egipcios (hace más de 3000 años) fueron los primeros en utilizar los ángulos de un triángulo y las razones trigonométricas para efectuar medidas en agricultura y para la construcción de pirámides. También se desarrollo a partir de los primeros esfuerzos hechos para avanzar en el estudio de la astronomía mediante la predicción de las rutas y posiciones de los cuerpos celestes y para mejorar la exactitud en la navegación y en el cálculo del tiempo y los calendarios.
Los babilonios y los egipcios (hace más de 3000 años) fueron los primeros en utilizar los ángulos de un triángulo y las razones trigonométricas para efectuar medidas en agricultura y para la construcción de pirámides. También se desarrolló a partir de los primeros esfuerzos hechos para avanzar en el estudio de la astronomía mediante la predicción de las rutas y posiciones de los cuerpos celestes y para mejorar la exactitud en la navegación y en el cálculo del tiempo y los calendarios.
El estudio de la trigonometría pasó después a Grecia, en donde se destaca el matemático y astrónomo Griego Hiparco de Nicea, por haber sido uno de los principales desarrolladores de la Trigonometría. Las tablas de “cuerdas” que construyó fueron las precursoras de las tablas de las funciones trigonométricas de la actualidad. Desde Grecia, la trigonometría pasó a la India y Arabia donde era utilizada en la Astronomía. Y desde Arabia se difundió por Europa, donde finalmente se separa de la Astronomía para convertirse en una rama independiente que hace parte de la Matemática. Los egipcios establecieron la medida de los ángulos en grados, minutos y segundos. Sin embargo, la tabla de cuerdas que construyó Hiparco para resolver triángulos comenzó con un ángulo de 71°, llegando hasta 180° con incrementos de 71°, la tabla daba la longitud de la cuerda delimitada por los lados del ángulo central dado que corta a una circunferencia de radio r. No se sabe el valor que Hiparco utilizó para r. Trescientos años después, el astrónomo Tolomeo utilizó r = 60, pues los griegos adoptaron el sistema numérico (base 60) de los babilonios. Durante muchos siglos, la trigonometría de Tolomeo fue la introducción básica para los astrónomos.
El teorema de Menelao utilizado para resolver triángulos esféricos fue autoría de Tolomeo. Al mismo tiempo, los astrónomos de la India habían desarrollado también un sistema trigonométrico basado en la función seno en vez de cuerdas como los griegos. Esta función seno, era la longitud del lado opuesto a un ángulo en un triángulo rectángulo de hipotenusa dada.
Los matemáticos indios utilizaron diversos valores para ésta en sus tablas. A finales del siglo VIII los astrónomos Árabes trabajaron con la función seno y a finales del siglo X ya habían completado la función seno y las otras cinco funciones. También descubrieron y demostraron teoremas fundamentales de la trigonometría tanto para triángulos planos como esféricos.
Los matemáticos sugirieron el uso del valor r = 1 en vez de r = 60, y esto dio lugar a los valores modernos de las funciones trigonométricas. El occidente latino se familiarizó con la trigonometría Árabe a través de traducciones de libros de astronomía arábigos, que comenzaron a aparecer en el siglo XII.
El primer trabajo importante en esta materia en Europa fue escrito por el matemático y astrónomo alemán Johann Müller, llamado Regiomontano. A principios del siglo XVII, el matemático John Napier inventó los logaritmos y gracias a esto los cálculos trigonométricos recibieron un gran empuje. A mediados del siglo XVII Isaac Newton inventó el cálculo diferencial e integral. Uno de los fundamentos del trabajo de Newton fue la representación de muchas funciones matemáticas utilizando series infinitas de potencias de la variable x. Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.
Por último, en el siglo XVIII, el matemático Leonhard Euler demostró que las propiedades de la trigonometría eran producto de la aritmética de los números complejos y además definió las funciones trigonométricas Claudio’ Contribuyó
...