Teoria De Los Juegos
Enviado por auraortiz • 15 de Agosto de 2014 • 2.459 Palabras (10 Páginas) • 310 Visitas
Teoría de juegos
La Teoría de Juegos consiste en razonamientos circulares, los cuales no pueden ser evitados al considerar cuestiones estratégicas. Por naturaleza, a los humanos no se les va muy bien al pensar sobre los problemas de las relaciones estratégicas, pues generalmente la solución es la lógica a la inversa.
En la Teoría de Juegos la intuición no es muy fiable en situaciones estratégicas, razón por la que se debe entrenar tomando en consideración ejemplos instructivos, sin necesidad que los mismos sean reales.
Origen de la teoría de juegos
La Teoría de Juegos fue creada por Von Neumann y Morgenstern, y descriptas en su libro clásico The Theory of Games Behavior, publicado en 1944. Otros habían anticipado algunas ideas. Los economistas Cournot y Edgeworth fueron particularmente innovadores en el siglo XIX. Otras contribuciones posteriores mencionadas fueron hechas por los aplicaciones, sin embargo, la economía es el principal cliente para las ideas producidas por los especialistas en Teoría de Juego. Entre las disciplinas donde hay aplicación de la Teoría de Juegos tenemos: La economía, la ciencia política, la biología y la filosofía.
Fundamentos
El objeto de estudio de la Teoría de Juegos son los juegos. Un juego es un proceso en que dos o más personas toman decisiones y acciones, la estructura de las cuales está inscrita en un conjunto de reglas (que pueden ser formales o informales), a fines de obtener beneficio. Cada combinación de decisiones y acciones determina una situación particular, y dado que las decisiones y acciones de los agentes involucrados pueden ser combinadas de numerosas formas, las situaciones generadas también serán numerosas y su magnitud igual a las de las combinaciones de decisiones y acciones de los agentes. El conjunto total de situaciones posibles será denominado Cuadro Situacional del Juego.
Siguiendo con el razonamiento anterior, encontramos que cada situación (es decir, cada punto del cuadro situacional) genera una combinación de premios determinada. El premio que le da a un jugador una situación particular puede ser comparado con los premios que le ofrecen las otras situaciones.
Una regla de oro del análisis de juegos es la siguiente: "cada jugador buscará su máximo bienestar posible". De esta forma, cuando estudiemos el proceder de un jugador, sabremos que éste deberá calificar cada situación y perseguir siempre las situaciones particulares que ofrezcan el mayor bienestar.
Un concepto importante es el del pago. Como se dijo, cada situación particular ofrece una combinación de premios, de la manera siguiente: si se trata de dos jugadores, la situación ofrece un premio para el primero y otro para el segundo. Si se trata de tres jugadores, la situación genera un premio para cada jugador. Ésta es la lógica de los premios y las situaciones. A cada premio se le llama pago.
Otro concepto central es el de la función de utilidad. La función de utilidad convierte a los pagos en bienestar. Por ejemplo, si se consiguió un pago de veinticinco unidades de dinero, éste pago podría generar un bienestar de veinticinco unidades de bienestar, y estaríamos hablando de una función identidad. Si la función de utilidades fuese una raíz cuadrada, el pago de veinticinco unidades correspondería sólo a un bienestar de cinco unidades de bienestar. En este documento nos ocuparemos principalmente de funciones de utilidad identidad. Cuando se requiera tratar funciones de utilidad diferentes (como la raíz cuadrada), presentaré los criterios de tratamiento de tales funciones.
Cómo usar la Teoría de Juegos en la realidad
Para usar la Teoría de Juegos como una aplicación para una situación real, se requiere construir modelos simplificados de la realidad. En estos modelos, se tendrá que representar a cada jugador con sus respectivas formas de conducta. Cuando se trata de dos jugadores, normalmente conocemos perfectamente cuál es nuestra forma de actuar, pero sólo conocemos en parte la de nuestro rival u oponente. Por esto se hace más fácil representar simplificadamente nuestra conducta que representar la conducta del rival.
En cualquier caso, se requiere representar adecuadamente las conductas de los dos (o más) jugadores. Nuestra conducta será conocida con certidumbre, mientras que la del rival sólo en forma probable (en lenguaje científico, estocástica). A veces se necesitará plantear dos o más representaciones de la conducta probable del rival. Cada representación recibe el nombre de escenario. Cada escenario es un juego simple. El conjunto de dos o más escenarios es un juego compuesto.
Algunas aplicaciones de la Teoría de Juegos a la vida real son las siguientes:
-Contratos
-Guerras militares
-Guerras comerciales
-Marketing para la competencia en los mercados
-Negociaciones domésticas
-Negociaciones comerciales
-Negociaciones colectivas
-Alianzas
Debe incluirse en la lista a cualquier otra situación en que dos o más individuos requieran interactuar a fines de obtener ganancias económicas. Como el ser humano es un homo económico, él puede encontrar infinidad de aplicaciones a la Teoría de Juegos
Análisis situacional en la Teoría de juegos
La Teoría de Juegos nos ayuda a analizar juegos en los que dos personas compiten por un único premio (juegos de suma cero de los pagos) y juegos en los que ambas personas pueden obtener cada una un premio simultáneamente (juegos de suma no-cero). La Teoría de Juegos enseña que la interacción de los dos jugadores generará una situación más probable, a la cual se le llamará la solución de juego. La solución del juego se sustenta en que la conducta de cada jugador llega a engancharse con la del otro, derivando todo esto en situaciones más fuertes que otras. Las situaciones más fuertes son las que serán producidas con la mayor probabilidad.
Viene aquí lo que yo considero el corazón de los beneficios ofrecidos por la Teoría de Juegos. El análisis de un juego lleva a que se determine cuál va a ser el punto final de solución de dicho juego. Debo decir que en la realidad existen muchos juegos cuyo final es imposible de determinar incluso con la ayuda de la Teoría de Juegos. Tal es el caso de un juego de ajedrez, el cual es un juego de suma cero, y todo lo que la Teoría de Juegos nos puede decir acerca de este juego es que uno de los dos jugadores ganará y el otro perderá el juego.
Al margen de tan grave circunstancia, la Teoría de Juegos sí puede ayudarnos a determinar los resultados de otros importantes juegos y situaciones de negociaciones e intereses en conflicto. El resultado más notable
...