ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Algebra Relacional


Enviado por   •  6 de Febrero de 2012  •  1.043 Palabras (5 Páginas)  •  829 Visitas

Página 1 de 5

El álgebra relacional es un conjunto de operaciones que describen paso a paso como computar una respuesta sobre las relaciones, tal y como éstas son definidas en el modelo relacional. Denominada de tipo procedimental, a diferencia del Cálculo relacional que es de tipo declarativo.

Describe el aspecto de la manipulación de datos. Estas operaciones se usan como una representación intermedia de una consulta a una base de datos y, debido a sus propiedades algebraicas, sirven para obtener una versión más optimizada y eficiente de dicha consulta

Tuplas

Una tupla se define como una función finita que asocia unívocamente los nombres de los atributos de una relación con los valores de una instanciación de la misma. En términos simplistas, es una fila de una tabla relacional.

[editar]Unión compatible

Una unión es compatible entre dos relaciones R, S, si ellas poseen el mismo grado y el dominio del iesimo elemento de la relación R es el mismo que el iesimo elemento de la relación S.

[editar]Grado (Aridad)

Número de atributos.

[editar]Las operaciones

[editar]Básicas

Cada operador del álgebra acepta una o dos relaciones y retorna una relación como resultado. σ y Π son operadores unarios, el resto de los operadores son binarios. Las operaciones básicas del álgebra relacional son:

[editar]Selección (σ)

Permite seleccionar un subconjunto de tuplas de una relación (R), todas aquellas que cumplan la(s) condición(es) P, esto es:

Ejemplo:

Selecciona todas las tuplas que contengan Gómez como apellido en la relación Alumnos.

Una condición puede ser una combinación booleana, donde se pueden usar operadores como: , , combinándolos con operadores .

[editar]Proyección (Π)

Permite extraer columnas (atributos) de una relación, dando como resultado un subconjunto vertical de atributos de la relación, esto es:

donde son atributos de la relación R .

Ejemplo:

Selecciona los atributos Apellido, Semestre y NumeroControl de la relación Alumnos, mostrados como un subconjunto de la relación Alumnos

[editar]Producto cartesiano (x)

El producto cartesiano de dos relaciones se escribe como:

y entrega una relación, cuyo esquema corresponde a una combinación de todas las tuplas de R con cada una de las tuplas de S, y sus atributos corresponden a los de R seguidos por los de S.

Ejemplo:

Muestra una nueva relación, cuyo esquema contiene cada una de las tuplas de la relación Alumnos junto con las tuplas de la relación Maestros, mostrando primero los atributos de la relación Alumnos seguidos por las tuplas de la relación Maestros.

[editar]Unión (∪)

La operación

retorna el conjunto de tuplas que están en R, o en S, o en ambas. R y S deben ser uniones compatibles.

Diferencia (-)

La diferencia de dos relaciones, R y S denotada por:

entrega todas aquellas tuplas que están en R, pero no en S. R y S deben ser unionescompatibles.

Estas operaciones son fundamentales en el sentido en que (1) todas las demás operaciones pueden ser expresadas como una combinación de éstas y (2) ninguna de estas operaciones pueden ser omitidas sin que con ello se pierda información.

[editar]No básicas o Derivadas

Entre los operadores no básicos tenemos:

[editar]Intersección (∩)

La intersección de dos relaciones se puede especificar en función de otros operadores básicos:

La intersección, como en Teoría de conjuntos, corresponde al conjunto de todas las tuplas que están en R y en S, siendo R y S uniones compatibles.

[editar]Unión natural ( ) (Natural Join)

La operación unión natural en el álgebra relacional es la que permite reconstruir las tablas originales previas al proceso de normalización. Consiste en combinar las proyección, selección y producto cartesiano en una sola operación, donde la condición θ es la igualdad Clave Primaria = Clave Externa (o Foranea), y la proyección elimina la columna duplicada (clave externa).

Expresada en las operaciones básicas, queda

Una reunión theta ( θ-Join) de dos relaciones es equivalente a:

donde la condición θ es libre.

Si la condición θ es una igualdad se denomina EquiJoin.

[editar]División (/)

Supongamos que tenemos dos relaciones A(x, y) y B(y) donde el dominio de y en A y B, es el mismo.

El operador división A / B retorna todos los distintos valores de x tales que para todo valor y en B existe una tupla en A.

[editar]Agrupación (Ģ)

Permite agrupar conjuntos de valores en función de un campo determinado y hacer operaciones con otros campos.

Por ejemplo: Ģ sum(puntos) as Total Equipo (PARTIDOS).

[editar]Ejemplos

Suponga las relaciones o tablas:

Alumno

ID NOMBRE CIUDAD EDAD

01 Pedro Santiago 14

11 Juan Buenos Aires 18

21 Diego Lima 12

31 Rosita Concepción 15

41 Manuel Lima 17

Apoderado

ID NOMBRE FONO ID_ALUMNO

054 Víctor 654644 21

457 José 454654 11

354 María 997455 31

444 Paz 747423 01

Curso

COD NOMBRE FECHA_INICIO DURACION VALOR

...

Descargar como (para miembros actualizados) txt (10 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com